Skip to main content

PARylation, DNA (De)methylation, and Diabetes

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Diabetes and diabetic complications, autoimmunity and inflammatory diseases, have recently become the focus of epigenetic therapy, since with epigenetic drugs it is possible to reverse aberrant gene expression profiles associated with the disease states. For diabetes, the therapy challenges depend on identifying the most appropriate molecular target and its influence on a relevant gene product. This chapter summarizes the current view on the interplay between ten-eleven translocation (TETs) and the poly(ADP-ribose) polymerase (PARPs) family of enzymes in regulating DNA methylation and how this interplay could be targeted to attenuate diabetes. This molecular interchange jigsaw puzzle is emerging as an important focus of research, and we can expect to see further advances in the elucidation of its role in diabetes as well as other pathologies. Moreover, the possibility for designating specific PARP-1 inhibitors as potential “EPI-drugs” for diabetes prevention/attenuation is also discussed. Understanding the epigenetic machinery and the differential roles of its components is essential for the development of targeted epigenetic therapies for diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3AB:

3-aminobenzamide

5caC:

5-carboxylcytosine

5fC:

5-formylcytosine

5hmC:

5-hydroxymethylcytosine

5hmU:

5-hydroxymethyluridine

5mC:

5-methylcytosine

BER:

base excision repair

C:

cytosine

CpG:

cytosine-phosphate-guanine

CRISPR/Cas9:

clustered regularly interspaced short palindromic repeats/associated protein-9 nuclease

DNMTs:

DNA methyltransferases

NAD+:

nicotinamide adenine dinucleotide

PARPs:

poly(ADP-ribose) polymerase family of enzymes

PARs:

poly(ADP-ribose) polymers

PARylation:

poly(ADP-ribosyl)ation

PARG:

poly(ADP-ribose) glycohydrolases

RO/NS:

reactive oxygen/nitrogen species

T1D:

type 1 diabetes

T2D:

type 2 diabetes

TDG:

thymine-DNA glycosylase

TETs:

ten-eleven translocation family of enzymes

α-KG:

α-ketoglutarate

References

  • Agardh E, Lundstig A, Perfilyev A et al (2015) Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy. BMC Med 13:182

    Article  Google Scholar 

  • Arguelles AO, Meruvu S, Bowman JD et al (2016) Are epigenetic drugs for diabetes and obesity at our door step? Drug Discov Today 21:499–509

    Article  Google Scholar 

  • Ba X, Garg NJ (2011) Signaling mechanism of poly(ADP-ribose) polymerase-1 (PARP-1) in inflammatory diseases. Am J Pathol 178:946–955

    Article  CAS  Google Scholar 

  • Bai P (2015) Biology of poly(ADP-Ribose) polymerases: the factotums of cell maintenance. Mol Cell 58:947–958

    Article  CAS  Google Scholar 

  • Bouwens L, Rooman I (2005) Regulation of pancreatic beta-cell mass. Physiol Rev 85:1255–1270

    Article  CAS  Google Scholar 

  • Burkart V, Wang ZQ, Radons J et al (1999) Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med 5:314–319

    Article  CAS  Google Scholar 

  • Caramori ML, Kim Y, Moore JH et al (2012) Gene expression differences in skin fibroblasts in identical twins discordant for type 1 diabetes. Diabetes 61:739–744

    Article  CAS  Google Scholar 

  • Carretero MV, Torres L, Latasa U et al (1998) Transformed but not normal hepatocytes express UCP2. FEBS Lett 439:55–58

    Article  CAS  Google Scholar 

  • Chen CC, Wang KY, Shen CK (2012) The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J Biol Chem 287:33116–33121

    Article  CAS  Google Scholar 

  • Christensen BC, Houseman EA, Marsit CJ et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602

    Article  Google Scholar 

  • Ciccarone F, Klinger FG, Catizone A et al (2012) Poly(ADP-ribosyl)ation acts in the DNA demethylation of mouse primordial germ cells also with DNA damage-independent roles. PLoS One 7:e46927

    Article  CAS  Google Scholar 

  • Ciccarone F, Valentini E, Bacalini MG et al (2014) Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription. Oncotarget 5:10356–10367

    Article  Google Scholar 

  • Ciccarone F, Valentini E, Zampieri M et al (2015) 5mC-hydroxylase activity is influenced by the PARylation of TET1 enzyme. Oncotarget 6:24333–24347

    Article  Google Scholar 

  • Dayeh T, Volkov P, Salo S et al (2014) Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10:e1004160

    Article  Google Scholar 

  • Dhawan S, Georgia S, Tschen SI et al (2011) Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell 20:419–429

    Article  CAS  Google Scholar 

  • Dhliwayo N, Sarras MP Jr, Luczkowski E et al (2014) Parp inhibition prevents ten-eleven translocase enzyme activation and hyperglycemia-induced DNA demethylation. Diabetes 63:3069–3076

    Article  Google Scholar 

  • Dodge JE, Okano M, Dick F et al (2005) Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J Biol Chem 280:17986–17991

    Article  CAS  Google Scholar 

  • Doege CA, Inoue K, Yamashita T et al (2012) Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488:652–655

    Article  CAS  Google Scholar 

  • Fujiki K, Shinoda A, Kano F et al (2013) PPARgamma-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat Commun 4:2262

    Article  Google Scholar 

  • Gallou-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54:1899–1906

    Article  CAS  Google Scholar 

  • Grdović N, Dinic S, Mihailovic M et al (2014) CXC chemokine ligand 12 protects pancreatic beta-cells from necrosis through Akt kinase-mediated modulation of poly(ADP-ribose) polymerase-1 activity. PLoS One 9:e101172

    Article  Google Scholar 

  • Guastafierro T, Cecchinelli B, Zampieri M et al (2008) CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery. J Biol Chem 283:21873–21880

    Article  CAS  Google Scholar 

  • Guastafierro T, Catizone A, Calabrese R et al (2013) ADP-ribose polymer depletion leads to nuclear Ctcf re-localization and chromatin rearrangement(1). Biochem J 449:623–630

    Article  CAS  Google Scholar 

  • Guo JU, Su Y, Zhong C et al (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    Article  CAS  Google Scholar 

  • Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96:13978–13982

    Article  CAS  Google Scholar 

  • Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279:48350–48359

    Article  CAS  Google Scholar 

  • Hill PW, Amouroux R, Hajkova P (2014) DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics 104:324–333

    Article  CAS  Google Scholar 

  • Ito S, D'Alessio AC, Taranova OV et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  CAS  Google Scholar 

  • Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  CAS  Google Scholar 

  • Jeltsch A, Jurkowska RZ (2014) New concepts in DNA methylation. Trends Biochem Sci 39:310–318

    Article  CAS  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  CAS  Google Scholar 

  • Kagiwada S, Kurimoto K, Hirota T et al (2013) Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J 32:340–353

    Article  CAS  Google Scholar 

  • Khan JA, Forouhar F, Tao X et al (2007) Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin Ther Targets 11:695–705

    Article  CAS  Google Scholar 

  • Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

    Article  CAS  Google Scholar 

  • Ling C, Del Guerra S, Lupi R et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622

    Article  CAS  Google Scholar 

  • Masiello P, Novelli M, Fierabracci V et al (1990) Protection by 3-aminobenzamide and nicotinamide against streptozotocin-induced beta-cell toxicity in vivo and in vitro. Res Commun Chem Pathol Pharmacol 69:17–32

    CAS  PubMed  Google Scholar 

  • Muller U, Bauer C, Siegl M et al (2014) TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation. Nucleic Acids Res 42:8592–8604

    Article  Google Scholar 

  • Pacher P, Szabo C (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 25:235–260

    Article  CAS  Google Scholar 

  • Pandya KG, Patel MR, Lau-Cam CA (2010) Comparative study of the binding characteristics to and inhibitory potencies towards PARP and in vivo antidiabetogenic potencies of taurine, 3-aminobenzamide and nicotinamide. J Biomed Sci 17(Suppl 1):S16

    Article  Google Scholar 

  • Park JH, Stoffers DA, Nicholls RD et al (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 118:2316–2324

    Article  CAS  Google Scholar 

  • Paul DS, Teschendorff AE, Dang MA et al (2016) Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat Commun 7:13555

    Article  CAS  Google Scholar 

  • Pennarossa G, Maffei S, Campagnol M et al (2013) Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci U S A 110:8948–8953

    Article  CAS  Google Scholar 

  • Pirola CJ, Scian R, Gianotti TF et al (2015) Epigenetic modifications in the biology of nonalcoholic fatty liver disease: the role of DNA hydroxymethylation and TET proteins. Medicine (Baltimore) 94:e1480

    Article  CAS  Google Scholar 

  • Rakyan VK, Beyan H, Down TA et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7:e1002300

    Article  CAS  Google Scholar 

  • Reale A, Matteis GD, Galleazzi G et al (2005) Modulation of DNMT1 activity by ADP-ribose polymers. Oncogene 24:13–19

    Article  CAS  Google Scholar 

  • Schuhwerk H, Atteya R, Siniuk K et al (2016) PARPing for balance in the homeostasis of poly(ADP-ribosyl)ation. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2016.09.011

  • Sookoian S, Rosselli MS, Gemma C et al (2010) Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology 52:1992–2000

    Article  CAS  Google Scholar 

  • Stead LM, Brosnan JT, Brosnan ME et al (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83:5–10

    Article  CAS  Google Scholar 

  • Stepper P, Kungulovski G, Jurkowska RZ et al (2016) Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res 45(4):1703–713

    Google Scholar 

  • Szabo C, Virag L, Cuzzocrea S et al (1998) Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly(ADP-ribose) synthase. Proc Natl Acad Sci U S A 95:3867–3872

    Article  CAS  Google Scholar 

  • Szabo C, Biser A, Benko R et al (2006) Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes 55:3004–3012

    Article  CAS  Google Scholar 

  • Toperoff G, Aran D, Kark JD et al (2012) Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet 21:371–383

    Article  CAS  Google Scholar 

  • Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    Article  CAS  Google Scholar 

  • Volkmar M, Dedeurwaerder S, Cunha DA et al (2012) DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 31:1405–1426

    Article  CAS  Google Scholar 

  • Williams KT, Garrow TA, Schalinske KL (2008) Type I diabetes leads to tissue-specific DNA hypomethylation in male rats. J Nutr 138:2064–69

    Article  CAS  Google Scholar 

  • Wurzer G, Herceg Z, Wesierska-Gadek J (2000) Increased resistance to anticancer therapy of mouse cells lacking the poly(ADP-ribose) polymerase attributable to up-regulation of the multidrug resistance gene product P-glycoprotein. Cancer Res 60:4238–4244

    CAS  PubMed  Google Scholar 

  • Yokochi T, Robertson KD (2002) Preferential methylation of unmethylated DNA by Mammalian de novo DNA methyltransferase Dnmt3a. J Biol Chem 277:11735–11745

    Article  CAS  Google Scholar 

  • Yokomori N, Tawata M, Onaya T (1999) DNA demethylation during the differentiation of 3T3-L1 cells affects the expression of the mouse GLUT4 gene. Diabetes 48:685–690

    Article  CAS  Google Scholar 

  • Yu W, Ginjala V, Pant V et al (2004) Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nat Genet 36:1105–1110

    Article  CAS  Google Scholar 

  • Zampieri M, Passananti C, Calabrese R et al (2009) Parp1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity. PLoS One 4:e4717

    Article  Google Scholar 

  • Zardo G, D'Erme M, Reale A et al (1997) Does poly(ADP-ribosyl)ation regulate the DNA methylation pattern? Biochemistry 36:7937–7943

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alexander von Humboldt foundation, program for funding a Research Group Linkage (2014) and Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 173020. This article is based upon work from COST Action (CM1406), supported by COST (European Cooperation in Science and Technology), participants MV and TPJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melita Vidaković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vidaković, M., Tolić, A., Grdović, N., Ravichandran, M., Jurkowski, T.P. (2019). PARylation, DNA (De)methylation, and Diabetes. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics