Forward and Reverse Epigenomics in Embryonic Stem Cells

  • Ilana Livyatan
  • Eran MeshorerEmail author
Reference work entry


The self-renewing and pluripotent properties of ESCs make them a precious tool for the advancement of general biological research, discerning the process of differentiation and embryonic development, disease modeling, drug discovery, drug testing, and, ultimately, cell- and tissue-based regenerative medicine. To further these goals, it is imperative that a deep and comprehensive understanding of all aspects of ESC biology are attained, particularly the transcriptional program and its regulation.

Chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (NGS) (ChIP-seq) pinpoints the binding locations of factors involved in epigenomic regulation of transcription such as transcription factors, modifications on histone proteins, chromatin modifiers and remodelers, and structural and insulator proteins. Each binding map by itself leads to insights into the mechanism of regulation of a specific factor and its downstream target genes upon which it exerts its regulatory effect leading to the discovery of the epigenomic “hallmarks” of ESCs which govern these cells’ state and fate.

On the other hand, an integration of a combination of binding maps enables researchers to gain an additional and complementary perspective on epigenomic regulation from the genomic point of view. By combining over 450 ChIP-seq datasets from large consortiums and singleton experimental efforts in our BindDB platform, we discovered a remarkably extensive epigenomic profile at active genes in ESCs. Based on this platform, we generated a robust in silico simulation of a reverse-ChIP protocol via implementation of an easy querying and analysis webtool ( to enable researchers to learn about which epigenomic features bind their genes or genomic regions of interest in ESCs. By querying several gene groups as case studies, we noted the participation of histone modifications, chromatin modifiers, chromatin remodelers, transcription factors, and structural proteins in the regulation of the same pieces of DNA, indicating how crucial and precise the epigenomic mechanism must be in ESCs. This utilization of both a forward and reverse approach to epigenomic research will greatly advance the acquisition of a more complete picture of the mechanisms of transcriptional regulation in ESCs and improve the ability to harness it toward advancing the research and medical potential of these unique cells.


Embryonic stem cells ESCs Pluripotent Epigenome Epigenomic profile Binding maps Webtool Database Chromatin Epigenomic signature Transcription factors 



Browser extensible data format


Chromatin immunoprecipitation


Chromatin immunoprecipitation followed by hybridization to microarray


Chromatin immunoprecipitation followed by sequencing


Deoxyribonucleic acid


DNA Methyltransferase


Encyclopedia of DNA elements (consortium)


Embryonic stem cell


Histone acetyl transferase


Histone deacetylase


Histone demethylase


High-throughput chromosome conformation capture


Histone methyltransferase


Methyl-binding domain


Ribonucleic acid


Topologically associating domain


Transcription factor


  1. Aaronson Y, Livyatan I, Gokhman D, Meshorer E (2016) Systematic identification of gene family regulators in mouse and human embryonic stem cells. Nucleic Acids Res 44:4080–4089CrossRefGoogle Scholar
  2. Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, Bock C, Boehm B, Campo E, Caricasole A et al (2012) BLUEPRINT to decode the epigenetic signature written in blood. Nat Biotechnol 30:224–226CrossRefGoogle Scholar
  3. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140CrossRefGoogle Scholar
  4. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M et al (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538CrossRefGoogle Scholar
  5. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837CrossRefGoogle Scholar
  6. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR et al (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181CrossRefGoogle Scholar
  7. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326CrossRefGoogle Scholar
  8. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR et al (2010) The NIH Roadmap Epigenomics mapping consortium. Nat Biotechnol 28:1045–1048CrossRefGoogle Scholar
  9. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956CrossRefGoogle Scholar
  10. Brandeis M, Ariel M, Cedar H (1993) Dynamics of DNA methylation during development. BioEssays: News Rev Mol Cell Dev Biol 15:709–713CrossRefGoogle Scholar
  11. Burton A, Torres-Padilla ME (2014) Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 15:723–734CrossRefGoogle Scholar
  12. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655CrossRefGoogle Scholar
  13. Chambers I, Tomlinson SR (2009) The transcriptional foundation of pluripotency. Development 136:2311–2322CrossRefGoogle Scholar
  14. Chen L, Daley GQ (2008) Molecular basis of pluripotency. Hum Mol Genet 17:R23–R27CrossRefGoogle Scholar
  15. Chen T, Dent SY (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15:93–106CrossRefGoogle Scholar
  16. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117CrossRefGoogle Scholar
  17. Dejardin J, Kingston RE (2009) Purification of proteins associated with specific genomic loci. Cell 136:175–186CrossRefGoogle Scholar
  18. Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH et al (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2:437–447CrossRefGoogle Scholar
  19. ENCODE (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74CrossRefGoogle Scholar
  20. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefGoogle Scholar
  21. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852CrossRefGoogle Scholar
  22. Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12:36–47CrossRefGoogle Scholar
  23. Gokhman D, Livyatan I, Sailaja BS, Melcer S, Meshorer E (2013) Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones. Nat Struct Mol Biol 20:119–126CrossRefGoogle Scholar
  24. Heng JC, Ng HH (2010) Transcriptional regulation in embryonic stem cells. Adv Exp Med Biol 695:76–91CrossRefGoogle Scholar
  25. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–435CrossRefGoogle Scholar
  26. Kawamata M, Ochiya T (2010) Establishment of embryonic stem cells from rat blastocysts. Methods Mol Biol 597:169–177CrossRefGoogle Scholar
  27. Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19:1129–1155CrossRefGoogle Scholar
  28. Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061CrossRefGoogle Scholar
  29. Kraushaar DC, Zhao K (2013) The epigenomics of embryonic stem cell differentiation. Int J Biol Sci 9:1134–1144CrossRefGoogle Scholar
  30. Livyatan I, Aaronson Y, Gokhman D, Ashkenazi R, Meshorer E (2015) BindDB: an integrated database and Webtool platform for “reverse-ChIP” epigenomic analysis. Cell Stem Cell 17:647–648CrossRefGoogle Scholar
  31. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440CrossRefGoogle Scholar
  32. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638CrossRefGoogle Scholar
  33. Mattout A, Biran A, Meshorer E (2011) Global epigenetic changes during somatic cell reprogramming to iPS cells. J Mol Cell Biol 3:341–350CrossRefGoogle Scholar
  34. Mayhall EA, Paffett-Lugassy N, Zon LI (2004) The clinical potential of stem cells. Curr Opin Cell Biol 16:713–720CrossRefGoogle Scholar
  35. Melcer S, Meshorer E (2010) Chromatin plasticity in pluripotent cells. Essays Biochem 48:245–262CrossRefGoogle Scholar
  36. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560CrossRefGoogle Scholar
  37. Morey L, Santanach A, Di Croce L (2015) Pluripotency and epigenetic factors in mouse embryonic stem cell fate regulation. Mol Cell Biol 35:2716–2728CrossRefGoogle Scholar
  38. Mountford P, Nichols J, Zevnik B, O'Brien C, Smith A (1998) Maintenance of pluripotential embryonic stem cells by stem cell selection. Reprod Fert Develop 10:527–533CrossRefGoogle Scholar
  39. Paranjpe SS, Veenstra GJ (2015) Establishing pluripotency in early development. Biochim Biophys Acta 1849:626–636CrossRefGoogle Scholar
  40. Pritsker M, Doniger TT, Kramer LC, Westcot SE, Lemischka IR (2005) Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci USA 102:14290–14295CrossRefGoogle Scholar
  41. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330CrossRefGoogle Scholar
  42. Sanchez-Castillo M, Ruau D, Wilkinson AC, Ng FS, Hannah R, Diamanti E, Lombard P, Wilson NK, Gottgens B (2015) CODEX: a next-generation sequencing experiment database for the haematopoietic and embryonic stem cell communities. Nucleic Acids Res 43:D1117–D1123CrossRefGoogle Scholar
  43. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220CrossRefGoogle Scholar
  44. Tee WW, Reinberg D (2014) Chromatin features and the epigenetic regulation of pluripotency states in ESCs. Development 141:2376–2390CrossRefGoogle Scholar
  45. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  46. Torres CM, Biran A, Burney MJ, Patel H, Henser-Brownhill T, Cohen AS, Li Y, Ben-Hamo R, Nye E, Spencer-Dene B et al (2016) The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science 353:1514Google Scholar
  47. Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J, Amit I, Gnirke A, Meissner A (2015) Transcription factor binding dynamics during human ES cell differentiation. Nature 518:344–349CrossRefGoogle Scholar
  48. Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, Pierce BG, Dong X, Kundaje A, Cheng Y et al (2012) Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 22:1798–1812CrossRefGoogle Scholar
  49. Wang Q, Huang J, Sun H, Liu J, Wang J, Wang Q, Qin Q, Mei S, Zhao C, Yang X et al (2014) CR Cistrome: a ChIP-Seq database for chromatin regulators and histone modification linkages in human and mouse. Nucleic Acids Res 42:D450–D458CrossRefGoogle Scholar
  50. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319CrossRefGoogle Scholar
  51. Xu H, Baroukh C, Dannenfelser R, Chen EY, Tan CM, Kou Y, Kim YE, Lemischka IR, Ma'ayan A (2013) ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells. Database: J Biol Databases Curation 2013:bat045Google Scholar
  52. Yeo JC, Ng HH (2013) The transcriptional regulation of pluripotency. Cell Res 23:20–32CrossRefGoogle Scholar
  53. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523CrossRefGoogle Scholar
  54. Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954CrossRefGoogle Scholar
  55. Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, Koebbe BC, Nielsen C, Hirst M, Farnham P et al (2011) The human epigenome browser at Washington University. Nat Methods 8:989–990CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of GeneticsThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of Genetics and the Edmond and Lily Safra Center for Brain Sciences (ELSC)The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations