Nutritional and Epigenetics Implications in Esophageal Cancer

  • Danielle Queiroz CalcagnoEmail author
  • Kelly Cristina da Silva Oliveira
  • Nina Nayara Ferreira Martins
Reference work entry


The effects of diet on the epigenome and its modifications on gene expression can provide a window to understanding carcinogenesis. In this chapter, an update of the most recent studies of nutritional epigenetics and how dietary nutrients affect these target mechanisms in esophageal cancer were performed. One-carbon metabolism nutrients and how a variety of nutrients such as folate, methionine, cobalamin, riboflavin, and vitamin B6 has the potential to perturb DNA and histone methylation patterns in esophageal cancer are reviewed. Additionally, the roles of nutrients such as genistein, epigallocatechin-3-gallate, resveratrol and curcumin as DNA methyltransferase inhibitors and modulators of histone modifications are also discussed in esophageal cancer.


Esophageal squamous cell carcinoma Esophageal adenocarcinoma One-carbon metabolism Folate Methionine Cobalamin Riboflavin Vitamin B6 Genistein Epigallocatechin-3-gallate Resveratrol Curcumin 

List of Abbreviations






Barrett’s esophagus


Cytochrome c oxidase subunit II




DNA methyltransferases


Esophageal adenocarcinoma


Esophageal squamous cell carcinoma


Extracellular signal-regulated kinase 1


Gastroesophageal reflux disease


Glutathione S-transferase Pi 1


Histone acetyltransferases


Histone deacetylases


Histone demethylases


Histone methyltransferases


Human mutL homolog 1


Jun proto-oncogene


Methionine adenosyltransferase


Methionine synthase


Methionine synthase


Methylenetetrahydrofolate reductase


Methionine synthase reductase


O6-Methylguanine DNA methyltransferase


Notch homolog 1 gene


Posttranslational modifications


Retinoid acid receptor-p






S-Adenosylhomocysteine hydrolase


Serine hydroxymethyltransferase


Single nucleotide polymorphisms




  1. Amigou A, Jérémie R, Laurent O et al (2012) Folic acid supplementation, MTHFR and MTRR polymorphisms, and the risk of childhood leukemia: the ESCALE study (SFCE). Cancer Causes Control 23(8):1265–1277PubMedGoogle Scholar
  2. Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23(8):853–859PubMedPubMedCentralGoogle Scholar
  3. Balbuena L, Casson AG (2010) Dietary folate and vitamin B6 are not associated with p53 mutations in esophageal adenocarcinoma. Mol Carcinog 49(3):211–214PubMedGoogle Scholar
  4. Baylin SB, Jones PA (2016) Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 8(9):a019505PubMedPubMedCentralGoogle Scholar
  5. Brown-Borg HM, Buffenstein R (2016) Cutting back on the essentials: can manipulating intake of specific amino acids modulate health and lifespan? Age Res Rev. pii: S1568–1637(16):30204–30205Google Scholar
  6. Busch C, Burkard M, Leischner C et al (2015) Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin Epigenetics 7(1):64PubMedPubMedCentralGoogle Scholar
  7. Calcagno DQ, de Arruda Cardoso Smith M, Burbano RR (2015) Cancer type-specific epigenetic changes: gastric cancer. Methods Mol Biol 1238:79–101PubMedGoogle Scholar
  8. Chang S, Chang PY, Butler B et al (2014) Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population. PLoS One 9(10):e109235PubMedPubMedCentralGoogle Scholar
  9. Chang SC, Goldstein BY, Mu L et al (2015) Plasma folate, vitamin B12, and homocysteine and cancers of the esophagus, stomach, and liver in a Chinese population. Nutr Cancer 67(2):212–223PubMedPubMedCentralGoogle Scholar
  10. Cohen DJ, Leichman L (2015) Controversies in the treatment of local and locally advanced gastric and esophageal cancers. J Clin Oncol 33(16):1754–1759PubMedGoogle Scholar
  11. Ding W, Dong-lei Z, Xun J et al (2013) Methionine synthase A2756G polymorphism and risk of colorectal adenoma and cancer: evidence based on 27 studies. PLoS One 8(4):e60508PubMedPubMedCentralGoogle Scholar
  12. Ducker GS, Rabinowitz JD (2017) One-carbon metabolism in health and disease. Cell Metab 25(1):27–42PubMedGoogle Scholar
  13. Duthie SJ (2011) Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J Inherit Metab Dis 34(1):101–109PubMedGoogle Scholar
  14. Falk GW (2009) Risk factors for esophageal cancer development. S Oncol Clin N Am 18(3):469–485Google Scholar
  15. Fang MZ, Chen D, Sun Y et al (2005a) Reversal of hypermethylation and reactivation of p16 INK4a, RAR b and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11(19):7033–7041PubMedGoogle Scholar
  16. Fang MZ, Jin Z, Wang Y et al (2005b) Promoter hypermethylation and inactivation of O(6)-methylguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines. In J Oncol 26(3):615–622Google Scholar
  17. Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137(Suppl 1):223S–228SPubMedGoogle Scholar
  18. Fang Y, Xiao F, An Z et al (2011) Systematic review on the relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and esophageal squamous cell carcinoma. Asian Pac J Cancer Prev 12:1861–1866PubMedGoogle Scholar
  19. Fanidi A, Relton C, Ueland PM et al (2015) A prospective study of one-carbon metabolism biomarkers and cancer of the head and neck and esophagus. Int J Cancer 136(4):915–927PubMedGoogle Scholar
  20. Feng Y, Yang Y, Fan C et al (2016) Pterostilbene inhibits the growth of human esophageal cancer cells by regulating endoplasmic reticulum stress. Cell Phys Biochem 38(3):1226–1244Google Scholar
  21. Ferguson LR, De Caterina R, Gorman U et al (2016) Guide and position of the International Society of nutrigenetics/nutrigenomics on personalised nutrition: part 1 – fields of precision nutrition. J Nutrigenet Nutrigenomics 9(1):12–27PubMedGoogle Scholar
  22. Frazzi R, Valli R, Tamagnini I et al (2013) Resveratrol-mediated apoptosis of Hodgkin lymphoma cells involves SIRT1 inhibition and FOXO3a hyperacetylation. In J Cancer 132(5):1013–1021Google Scholar
  23. Gilbert ER, Liu D (2010) Flavonoids influence epigenetic-modifying enzyme activity: structure – function relationships and the therapeutic potential for cancer. Curr Med Chem 17(17):1756–1768PubMedPubMedCentralGoogle Scholar
  24. Gruber BM (2016) B-group vitamins: chemoprevention? Adv Clin Exp Med 25(3):561–568PubMedGoogle Scholar
  25. Hwang KA, Choi KC (2015) Anticarcinogenic effects of dietary phytoestrogens and their chemopreventive mechanisms. Nutr Cancer 67(5):796–803PubMedGoogle Scholar
  26. Ibiebele TI, Highes MC, Pandeya N et al (2011) High intake of folate from food sources is associated with reduced risk of esophageal cancer in an Australian population. J Nutr 141:274–283PubMedGoogle Scholar
  27. Imran M, Saeed F, Nadeem M, et al (2016) Cucurmin; anticancer and antitumor perspectives – a comprehensive review. Crit Rev Food Sci Nutr 22:0Google Scholar
  28. Kavoosi F, Dastjerdi MN, Valiani A et al (2016) Genistein potentiates the effect of 17-beta estradiol on human hepatocellular carcinoma cell line. Adv Biom Res 5(1):133Google Scholar
  29. Keld R, Thian M, Hau C et al (2014) Polymorphisms of MTHFR and susceptibility to oesophageal adenocarcinoma in a Caucasian United Kingdom population. World J Gastroenterol 20(34):12212–12216PubMedPubMedCentralGoogle Scholar
  30. Khan N, Mukhtar H (2010) Cancer and metastasis: prevention and treatment by green tea. Cancer Metastasis Rev 29(3):435–445PubMedPubMedCentralGoogle Scholar
  31. Khan S, Karmokar A, Howells L et al (2016) Targeting cancer stem-like cells using dietary-derived agents – where are we now? Mol Nutr Food Res 60(6):1295–1309PubMedGoogle Scholar
  32. Lee GA, Hwang KA, Choi KC (2016) Roles of dietary phytoestrogens on the regulation of epithelial-mesenchymal transition in diverse cancer metastasis. Toxicology 8(6):162Google Scholar
  33. Lestari ML, Indrayanto G (2014) Curcumin. Profiles Drug Subst Excip Relat Methodol 39:113–204PubMedGoogle Scholar
  34. Li Y, Wicha MS, Schwartz SJ et al (2011) Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 22(9):799–806PubMedPubMedCentralGoogle Scholar
  35. Li Q, Mao L, Wang R (2014) Overexpression of S-adenosylhomocysteine hydrolase (SAHH) in esophageal squamous cell carcinoma (ESCC) cell lines: effects on apoptosis, migration and adhesion of cells. Mol Biol Rep 41:2409–2417PubMedGoogle Scholar
  36. Liu Y, Chen H, Sun Z et al (2015a) Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma. Cancer Lett 361(2):164–173PubMedPubMedCentralGoogle Scholar
  37. Liu L, Hou L, Gu S et al (2015b) Molecular mechanism of epigallocatechin-3-gallate in human esophageal squamous cell carcinoma in vitro and in vivo. Oncol Rep 33(1):297–303PubMedGoogle Scholar
  38. Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 3(8):572–583Google Scholar
  39. Lynch KL (2016) Is obesity associated with Barrett’s esophagus and esophageal adenocarcinoma? Gastroenterol Clin N Am 45(4):615–624Google Scholar
  40. Mahran RI, Hagras MM, Sun D et al (2017) Bringing curcumin to the clinic in cancer prevention: a review of strategies to enhance bioavailability and efficacy. AAPS J 19(1):54–81PubMedGoogle Scholar
  41. Martinez JA, Navas-Carretero S, Saris WH et al (2014) Personalized weight loss strategies – the role of macronutrient distribution. Nat Rev Endocrinol 10(12):749–760PubMedGoogle Scholar
  42. Maru GB, Hudlikar RR, Kumar G et al (2016) Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: from experimental models to clinical trials. World J Biol Chem 7(1):88–100PubMedPubMedCentralGoogle Scholar
  43. Mayne ST, Risch HA, Dubrow R et al (2001) Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev 10(10):1055–1062PubMedGoogle Scholar
  44. Meeran SM, Patel SN, Tak-Hang C et al (2011) A novel prodrug of epigallocatechin-3-gallate: differential epigenetic hTERT repression in human breast cancer cells. Cancer Prev Res 4(8):1243–1254Google Scholar
  45. Mentch SJ, Locasale JW (2015) One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci 1363:91–98PubMedPubMedCentralGoogle Scholar
  46. Milano F, Mari L, Van de Luijtgaarden W et al (2013) Nano-curcumin inhibits proliferation of esophageal adenocarcinoma cells and enhances the T cell mediated immune response. Front Oncol 3:137PubMedPubMedCentralGoogle Scholar
  47. Mudryj AN, de Groh M, Aukema HM et al (2016) Folate intakes from diet and supplements may place certain Canadians at risk for folic acid toxicity. Br J Nutr 16(7):1236–1245Google Scholar
  48. Mukherjee N, Kumar AP, Ghosh R (2015) DNA methylation and flavonoids in genitourinary cancers. Curr Pharmacol Rep 1(2):112–120PubMedPubMedCentralGoogle Scholar
  49. Nakos M, Pepelanova I, Beutel S et al (2017) Isolation and analysis of vitamin B12 from plant samples. Food Chem 216:301–308PubMedGoogle Scholar
  50. Obeid R (2013) The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrition 5(9):3481–3495Google Scholar
  51. Olefson S, Moss SF (2015) Obesity and related risk factors in gastric cardia adenocarcinoma. Gastric Cancer 18(1):23–32PubMedGoogle Scholar
  52. Ong TP, Moreno FS, Ross SA (2011) Targeting the epigenome with bioactive food components for cancer prevention. J Nutrigenet Nutrigenomics 4(5):275–292PubMedPubMedCentralGoogle Scholar
  53. Patel KR, Scott E, Brown VA et al (2011) Clinical trials of resveratrol. Ann N Y Acad Sci 1215(1):161–169PubMedGoogle Scholar
  54. Pavese JM, Krishna SN, Bergan RC (2014) Genistein inhibits human prostate cancer cell detachment, invasion, and metastasis. Am J Clin Nutr 100(Suppl 1):431S–436SPubMedPubMedCentralGoogle Scholar
  55. Peng Q, Chen H, Huo JR (2016) Alcohol consumption and corresponding factors: a novel perspective on the risk factors of esophageal cancer (review). Oncol Lett 11(5):3231–3239PubMedPubMedCentralGoogle Scholar
  56. Reim D, Friess H (2016) Feeding challenges in patients with esophageal and gastroesophageal cancers. Gastrointest Tumors 2(4):166–177PubMedPubMedCentralGoogle Scholar
  57. Rice TW, Blackstone EH, Rusch VW (2010) 7th edition of the AJCC cancer staging manual: esophagus and esophagogastric junction. Ann Surg Oncol 17(7):1721–1724PubMedGoogle Scholar
  58. Saavedra OM, Isakovic L, Llewellyn DB et al (2009) SAR around (l)-S-adenosyl-l-homocysteine, an inhibitor of human DNA methyltransferase (DNMT) enzymes. Bioorg Med Chem Lett 19(10):2747–2751PubMedGoogle Scholar
  59. Sales JM, Resurreccion AVA (2014) Resveratrol in peanuts. Crit Rev Food Sci Nutr 54(6):734–770PubMedGoogle Scholar
  60. Schweinberger BM, Wyse AT (2016) Mechanistic basis of hypermethioninemia. Amino Acids 48(11):2479–2489PubMedGoogle Scholar
  61. Seitz HK, Stickel F (2010) Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr 5(2):121–128PubMedGoogle Scholar
  62. Sharp L, Carsin AE, Cantwell MM et al (2013) Intakes of dietary folate and other B vitamins are associated with risks of esophageal adenocarcinoma, Barrett’s esophagus, and reflux esophagitis. J Nutr 143(12):1966–1973PubMedGoogle Scholar
  63. Stefanska B, Karlic H, Varga F (2012) Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention. Br J Pharmacol 167(2):279–297PubMedPubMedCentralGoogle Scholar
  64. Su X, Wellen KE, Rabinowitz JD (2016) Metabolic control of methylation and acetylation. Curr Opin Chem Biol 30:52–60PubMedGoogle Scholar
  65. Subramaniam D, Ponnurangam S, Ramamoorthy P et al (2012) Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One 7(2):1–11Google Scholar
  66. Tang Q, Li G, Wei X et al (2013) Resveratrol-induced apoptosis is enhanced by inhibition of autophagy in esophageal squamous cell carcinoma. Cancer Lett 336(2):325–337PubMedGoogle Scholar
  67. Tang L, Lee AH, Xu F et al (2014a) Soya and isoflavone intakes associated with reduced risk of oesophageal cancer in north-west China. Public Health Nutr 18(1):130–134PubMedGoogle Scholar
  68. Tang M, Wang SQ, Liu BJ et al (2014b) The methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and tumor risk: evidence from 134 case – control studies. Mol Biol Rep 2014:4659–4673Google Scholar
  69. Ulrich S, Rau O, Loitsch SM et al (2006) Peroxisome proliferator-activated receptor gamma as a molecular target of resveratrol-induced modulation of polyamine metabolism. Cancer Res 66(14):7348–7354PubMedGoogle Scholar
  70. Xiao Q, Freedman ND, Ren J et al (2014) Intakes of folate, methionine, vitamin B6 and vitamin B12 with risk of esophageal and gastric cancer in a large cohort study. Br J Cancer 110(5):1328–1333PubMedPubMedCentralGoogle Scholar
  71. Yang Q, Wang B, Zang W et al (2013) Resveratrol inhibits the growth of gastric cancer by inducing G1 phase arrest and senescence in a sirt1-dependent manner. PLoS One 8(11):e70627. D Heymann, edPubMedPubMedCentralGoogle Scholar
  72. Ye F, Zhang GH, Guan BX et al (2012) Suppression of esophageal cancer cell growth using curcumin, (−)-epigallocatechin-3-gallate and lovastatin. World J Gastroenterol 18(2):126PubMedPubMedCentralGoogle Scholar
  73. Zhao P, Fengsong L, Li Z et al (2011) Folate intake, methylenetetrahydrofolate reductase polymorphisms and risk of esophageal cancer. Asian Pac J Cancer Prev 12(8):019–023Google Scholar
  74. Zhao T, Gu D, Xu Z et al (2015) Polymorphism in one-carbon metabolism pathway affects survival of gastric cancer patients: large and comprehensive study. Oncotarget 6(11):9564–9576PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Danielle Queiroz Calcagno
    • 1
    Email author
  • Kelly Cristina da Silva Oliveira
    • 1
  • Nina Nayara Ferreira Martins
    • 2
  1. 1.Núcleo de Pesquisas em OncologiaUniversidade Federal do ParáBelémBrazil
  2. 2.Núcleo de Pesquisas em OncologiaUniversidade Federal do ParáBelemBrazil

Personalised recommendations