Epigenetic Effects of Bisphenol A (BPA): A Literature Review in the Context of Human Dietary Exposure

  • Luísa Camacho
  • Igor P. Pogribny
Reference work entry


Bisphenol A (BPA) is a high production volume industrial chemical used widely in the production of polycarbonate plastics and epoxy resins for manufacturing food and drink storage containers, the lining of food cans, dental sealants, medical devices, and thermal paper. Biomonitoring studies show that there is widespread exposure of the human population to BPA, mainly via the diet. The median daily intake of the overall US population is approximately 25 ng BPA/kg body weight (bw)/day, which is estimated to result in serum levels of BPA in the pM range. BPA is an endocrine-disrupting chemical, with known estrogenic activity; more recently, it has been reported to induce epigenetic changes in vitro and in vivo, including effects in DNA methylation, differential histone modifications, and modulation of the levels of noncoding RNAs. This chapter summarizes the studies reporting epigenetic effects associated with human exposure to BPA or induced by the in vitro or in vivo exposure to the chemical. The literature suggesting an association between human exposure to BPA and epigenetic changes is limited. Several studies have assessed the effects of BPA in in vitro cell systems and suggest treatment-related epigenetic effects; the lowest effective BPA dose in vitro was in the nM dose range and the dose-response in these studies tended to be linear. In vivo animal studies suggest epigenetic effects of BPA in a wide range of organs, dose levels, and epigenetic endpoints; however, many studies have limitations, including the use of a single dose level that precludes the characterization of the dose-response of the reported effects. Comprehensive well-designed and well-controlled studies, which include both sexes, multiple and properly spaced BPA doses, multiple time points, and integration of the epigenetic endpoints with other molecular, physiological, and morphological endpoints should provide a better understanding of the potential of BPA to act as an epigenetic modulator.


Bisphenol A (BPA) Endocrine-disrupting chemical DNA methylation Histone modification Noncoding RNA microRNA Human In vitro Liver Heart Brain Mammary gland Ovary Uterus Placenta Prostate Testis Sperm 

List of Abbreviations


Bisphenol A


Body weight


Calsequestrin 2


Consortium Linking Academic and Regulatory Insights on BPA Toxicity


DNA methyltransferase


European Food Safety Agency


Estrogen receptor


Estrogen-related receptor-γ


Enhancer of zeste 2 polycomb repressive complex 2 subunit


Food and Drug Administration


FK506-binding protein 5




Gestational day


G protein-coupled estrogen receptor


Imprinted maternally expressed transcript


Histone deacetylase 1


Homeostatic model assessment


HOX antisense intergenic RNA




Hippocalcin-like 1


Intracisternal A particle


Insulin-like growth factor 1


Insulin-like growth factor 2 receptor


Lysosomal-associated membrane protein 3


Long interspersed nuclear elements-1


Long noncoding RNA




Nucleosome-binding protein 1


Phosphodiesterase type 4D variant 4


Paternally expressed gene 3


Peroxisome proliferator activated receptor-γ, coactivator 1α


Postnatal day


Secretaglobin family 2A member 1


Small nucleolar RNAs with C/D motif


Sex determining region Y box 2


Sterol regulatory element-binding transcription factor


Steroidogenic acute regulatory protein


Stimulated by retinoic acid gene 8


Tumor protein D52




  1. Abdel-Maksoud FM, Leasor KR, Butzen K et al (2015) Prenatal exposures of male rats to the environmental chemicals bisphenol A and di(2-Ethylhexyl) phthalate impact the sexual differentiation process. Endocrinology 156(12):4672–4683CrossRefGoogle Scholar
  2. Altamirano GA, Ramos JG, Gomez AL et al (2016) Perinatal exposure to bisphenol A modifies the transcriptional regulation of the beta-casein gene during secretory activation of the rat mammary gland. Mol Cell Endocrinol 439:407–418CrossRefGoogle Scholar
  3. Anderson OS, Nahar MS, Faulk C et al (2012) Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A. Environ Mol Mutagen 53(5):334–342CrossRefGoogle Scholar
  4. Avissar-Whiting M, Veiga KR, Uhl KM et al (2010) Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 29(4):401–406CrossRefGoogle Scholar
  5. Bhan A, Hussain I, Ansari KI et al (2014) Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol 141:160–170CrossRefGoogle Scholar
  6. Bromer JG, Zhou Y, Taylor MB et al (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24(7):2273–2280CrossRefGoogle Scholar
  7. Calafat AM, Ye X, Wong LY et al (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116(1):39–44Google Scholar
  8. Camacho L, Basavarajappa MS, Chang CW et al (2015) Effects of oral exposure to bisphenol A on gene expression and global genomic DNA methylation in the prostate, female mammary gland, and uterus of NCTR Sprague-Dawley rats. Food Chem Toxicol 81:92–103CrossRefGoogle Scholar
  9. Chao HH, Zhang XF, Chen B et al (2012) Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochem Cell Biol 137(2):249–259CrossRefGoogle Scholar
  10. Chapin RE, Adams J, Boekelheide K et al (2008) NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Res B Dev Reprod Toxicol 83(3):157–395CrossRefGoogle Scholar
  11. Cheong A, Zhang X, Cheung YY et al (2016) DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk. Epigenetics 11(9):674–689Google Scholar
  12. De Felice B, Manfellotto F, Palumbo A et al (2015) Genome-wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC Med Genet 8:56Google Scholar
  13. Deb P, Bhan A, Hussain I et al (2016) Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo. Gene 590(2):234–243CrossRefGoogle Scholar
  14. Delclos KB, Camacho L, Lewis SM et al (2014) Toxicity evaluation of bisphenol A administered by gavage to Sprague Dawley rats from gestation day 6 through postnatal day 90. Toxicol Sci 139(1):174–197CrossRefGoogle Scholar
  15. Dhimolea E, Wadia PR, Murray TJ et al (2014) Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development. PLoS One 9(7):e99800CrossRefGoogle Scholar
  16. Doerge DR, Twaddle NC, Vanlandingham M et al (2010a) Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats. Toxicol Appl Pharmacol 247(2):158–165Google Scholar
  17. Doerge DR, Vanlandingham M, Twaddle NC et al (2010b) Lactational transfer of bisphenol A in Sprague-Dawley rats. Toxicol Lett 199(3):372–376Google Scholar
  18. Doerge DR, Twaddle NC, Woodling KA et al (2010c) Pharmacokinetics of bisphenol A in neonatal and adult rhesus monkeys. Toxicol Appl Pharmacol 248:1–11Google Scholar
  19. Doerge DR, Twaddle NC, Vanlandingham M et al (2011a) Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague-Dawley rats. Toxicol Appl Pharmacol 255(3):261–270Google Scholar
  20. Doerge DR, Twaddle NC, Vanlandingham M et al (2011b) Pharmacokinetics of bisphenol A in neonatal and adult CD-1 mice: inter-species comparisons with Sprague-Dawley rats and rhesus monkeys. Toxicol Lett 207(3):298–305Google Scholar
  21. Doerge DR, Twaddle NC, Vanlandingham M et al (2012) Pharmacokinetics of bisphenol A in serum and adipose tissue following intravenous administration to adult female CD-1 mice. Toxicol Lett 211(2):114–119Google Scholar
  22. Doherty LF, Bromer JG, Zhou Y et al (2010) In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1(3):146–155CrossRefGoogle Scholar
  23. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104(32):13056–13061CrossRefGoogle Scholar
  24. Doshi T, Mehta SS, Dighe V et al (2011) Hypermethylation of estrogen receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. Toxicology 289(2–3):74–82CrossRefGoogle Scholar
  25. Doshi T, D’Souza C, Vanage G (2013) Aberrant DNA methylation at Igf2-H19 imprinting control region in spermatozoa upon neonatal exposure to bisphenol A and its association with post implantation loss. Mol Biol Rep 40(8):4747–4757CrossRefGoogle Scholar
  26. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) (2015) Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 13(1):3978CrossRefGoogle Scholar
  27. Faulk C, Kim JH, Jones TR et al (2015) Bisphenol A-associated alterations in genome-wide DNA methylation and gene expression patterns reveal sequence-dependent and non-monotonic effects in human fetal liver. Environ Epigenet. 1(1): dvv006Google Scholar
  28. Fisher JW, Twaddle NC, Vanlandingham M et al (2011) Pharmacokinetic modeling: prediction and evaluation of route dependent dosimetry of bisphenol A in monkeys with extrapolation to humans. Toxicol Appl Pharmacol 257(1):122–136CrossRefGoogle Scholar
  29. Hiyama M, Choi EK, Wakitani S et al (2011) Bisphenol-A (BPA) affects reproductive formation across generations in mice. J Vet Med Sci 73(9):1211–1215CrossRefGoogle Scholar
  30. Ho SM, Tang WY, Belmonte de Frausto J et al (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66(11):5624–5632CrossRefGoogle Scholar
  31. Ho SM, Cheong A, Lam HM et al (2015) Exposure of human prostaspheres to bisphenol A epigenetically regulates SNORD family noncoding RNAs via histone modification. Endocrinology 156(11):3984–3995Google Scholar
  32. Hong J, Chen F, Wang X et al (2016) Exposure of preimplantation embryos to low-dose bisphenol A impairs testes development and suppresses histone acetylation of StAR promoter to reduce production of testosterone in mice. Mol Cell Endocrinol 427:101–111CrossRefGoogle Scholar
  33. Huang B, Ning S, Zhang Q et al (2017) Bisphenol A represses dopaminergic neuron differentiation from human embryonic stem cells through downregulating the expression of insulin-like growth factor 1. Mol Neurobiol 54(5):3798–3812Google Scholar
  34. Hussain I, Bhan A, Ansari KI, Deb P, Bobzean SA, Perrotti LI, Mandal SS (2015) Bisphenol-A induces expression of HOXC6, an estrogen-regulated homeobox-containing gene associated with breast cancer. Biochim Biophys Acta 1849(6):697–708CrossRefGoogle Scholar
  35. Jiang Y, Xia W, Yang J et al (2015) BPA-induced DNA hypermethylation of the master mitochondrial gene PGC-1alpha contributes to cardiomyopathy in male rats. Toxicology 329:21–31CrossRefGoogle Scholar
  36. Jiang W, Cao L, Wang F et al (2016) Accelerated reduction of serum thyroxine and hippocampal histone acetylation links to exacerbation of spatial memory impairment in aged CD-1 mice pubertally exposed to bisphenol-A. Age (Dordr) 38(5–6):405–418CrossRefGoogle Scholar
  37. Jorgensen EM, Alderman MH 3rd, Taylor HS (2016) Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure. FASEB J 30(9):3194–3201CrossRefGoogle Scholar
  38. Ke ZH, Pan JX, Jin LY et al (2016) Bisphenol A exposure may induce hepatic lipid accumulation via reprogramming the DNA methylation patterns of genes involved in lipid metabolism. Sci Rep 6:31331CrossRefGoogle Scholar
  39. Kim JH, Rozek LS, Soliman AS et al (2013) Bisphenol A-associated epigenomic changes in prepubescent girls: a cross-sectional study in Gharbiah. Egypt Environ Health 12:33CrossRefGoogle Scholar
  40. Kitraki E, Nalvarte I, Alavian-Ghavanini A et al (2015) Developmental exposure to bisphenol A alters expression and DNA methylation of Fkbp5, an important regulator of the stress response. Mol Cell Endocrinol 417:191–199CrossRefGoogle Scholar
  41. Kuiper GG, Carlsson B, Grandien K et al (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138(3):863–870CrossRefGoogle Scholar
  42. Kuiper GG, Lemmen JG, Carlsson B et al (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139(10):4252–4263CrossRefGoogle Scholar
  43. Kundakovic M, Gudsnuk K, Franks B et al (2013) Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci USA 110(24):9956–9961CrossRefGoogle Scholar
  44. Kundakovic M, Gudsnuk K, Herbstman JB et al (2015) DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci USA 112(22):6807–6813CrossRefGoogle Scholar
  45. LaKind JS, Naiman DQ (2015) Temporal trends in bisphenol A exposure in the United States from 2003–2012 and factors associated with BPA exposure: spot samples and urine dilution complicate data interpretation. Environ Res 142:84–95CrossRefGoogle Scholar
  46. Li G, Chang H, Xia W et al (2014) F0 maternal BPA exposure induced glucose intolerance of F2 generation through DNA methylation change in Gck. Toxicol Lett 228(3):192–199CrossRefGoogle Scholar
  47. Li Q, Kappil MA, Li A, Dassanayake PS et al (2015) Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children’s study (NCS). Epigenetics 10(9):793–802CrossRefGoogle Scholar
  48. Loganathan SN, Kannan K (2011) Occurrence of bisphenol A in indoor dust from two locations in the eastern United States and implications for human exposures. Arch Environ Contam Toxicol 61(1):68–73Google Scholar
  49. Ma Y, Xia W, Wang DQ et al (2013) Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood. Diabetologia 56(9):2059–2067CrossRefGoogle Scholar
  50. Matthews JB, Twomey K, Zacharewski TR (2001) In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors alpha and beta. Chem Res Toxicol 14(2):149–157CrossRefGoogle Scholar
  51. Miao M, Zhou X, Li Y et al (2014) LINE-1 hypomethylation in spermatozoa is associated with bisphenol A exposure. Andrology 2(1):138–144CrossRefGoogle Scholar
  52. Monje L, Varayoud J, Luque EH et al (2007) Neonatal exposure to bisphenol A modifies the abundance of estrogen receptor alpha transcripts with alternative 5′-untranslated regions in the female rat preoptic area. J Endocrinol 194(1):201–212CrossRefGoogle Scholar
  53. Nahar MS, Liao C, Kannan K et al (2015) In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere 124:54–60CrossRefGoogle Scholar
  54. Okada H, Tokunaga T, Liu X et al (2008) Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma. Environ Health Perspect 116(1):32–38CrossRefGoogle Scholar
  55. Patel BB, Raad M, Sebag IA et al (2013) Lifelong exposure to bisphenol A alters cardiac structure/function, protein expression, and DNA methylation in adult mice. Toxicol Sci 133(1):174–185CrossRefGoogle Scholar
  56. Patterson TA, Twaddle NC, Roegge CS et al (2013) Concurrent determination of bisphenol A pharmacokinetics in maternal and fetal rhesus monkeys. Toxicol Appl Pharmacol 267(1):41–48Google Scholar
  57. Qin XY, Fukuda T, Yang L et al (2012) Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells. Cancer Biol Ther 13(5):296–306Google Scholar
  58. Rosenfeld CS, Sieli PT, Warzak DA et al (2013) Maternal exposure to bisphenol A and genistein has minimal effect on A(vy)/a offspring coat color but favors birth of agouti over nonagouti mice. Proc Natl Acad Sci USA 110(2):537–542CrossRefGoogle Scholar
  59. Schug TT, Heindel JJ, Camacho L et al (2013) A new approach to synergize academic and guideline-compliant research: the CLARITY-BPA research program. Reprod Toxicol 40:35–40CrossRefGoogle Scholar
  60. Shelby MD (2008) NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. NTP CERHR MON 2008:1–64Google Scholar
  61. Susiarjo M, Sasson I, Mesaros C et al (2013) Bisphenol A exposure disrupts genomic imprinting in the mouse. PLoS Genet 9(4):e1003401CrossRefGoogle Scholar
  62. Takayanagi S, Tokunaga T, Liu X et al (2006) Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol Lett 167(2):95–105CrossRefGoogle Scholar
  63. Tang WY, Morey LM, Cheung YY et al (2012) Neonatal exposure to estradiol/bisphenol A alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life. Endocrinology 153(1):42–55CrossRefGoogle Scholar
  64. Taylor JA, Vom Saal FS, Welshons WV et al (2011) Similarity of bisphenol A pharmacokinetics in rhesus monkeys and mice: relevance for human exposure. Environ Health Perspect 119(4):422–430CrossRefGoogle Scholar
  65. Teeguarden JG, Calafat AM, Ye X et al (2011) Twenty-four hour human urine and serum profiles of bisphenol A during high-dietary exposure. Toxicol Sci 123(1):48–57Google Scholar
  66. Teeguarden J, Hanson-Drury S, Fisher JW et al (2013) Are typical human serum BPA concentrations measurable and sufficient to be estrogenic in the general population? Food Chem Toxicol 62:949–963CrossRefGoogle Scholar
  67. Thayer KA, Doerge DR, Hunt D et al (2015) Pharmacokinetics of bisphenol A in humans following a single oral administration. Environ Int 83:107–115CrossRefGoogle Scholar
  68. Thayer KA, Taylor KW, Garantziotis S et al (2016) Bisphenol A, bisphenol S, and 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP) in urine and blood of cashiers. Environ Health Perspect 124(4):437–444Google Scholar
  69. Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102(1–5):175–179CrossRefGoogle Scholar
  70. Tilghman SL, Bratton MR, Segar HC et al (2012) Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS One 7(3):e32754CrossRefGoogle Scholar
  71. van Esterik JC, Vitins AP, Hodemaekers HM et al (2015) Liver DNA methylation analysis in adult female C57BL/6JxFVB mice following perinatal exposure to bisphenol A. Toxicol Lett 232(1):293–300Google Scholar
  72. Varayoud J, Ramos JG, Bosquiazzo VL et al (2008) Developmental exposure to Bisphenol A impairs the uterine response to ovarian steroids in the adult. Endocrinology 149(11):5848–5860CrossRefGoogle Scholar
  73. Veiga-Lopez A, Luense LJ, Christenson LK et al (2013) Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology 154(5):1873–1884CrossRefGoogle Scholar
  74. Vigezzi L, Ramos JG, Kass L et al (2016) A deregulated expression of estrogen-target genes is associated with an altered response to estradiol in aged rats perinatally exposed to bisphenol A. Mol Cell Endocrinol 426:33–42CrossRefGoogle Scholar
  75. Völkel W, Colnot T, Csanády GA et al (2002) Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol 15(10):1281–1287CrossRefGoogle Scholar
  76. Weng YI, Hsu PY, Liyanarachchi S et al (2010) Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol 248(2):111–121CrossRefGoogle Scholar
  77. Wong RL, Wang Q, Trevino LS et al (2015) Identification of secretaglobin Scgb2a1 as a target for developmental reprogramming by BPA in the rat prostate. Epigenetics 10(2):127–134CrossRefGoogle Scholar
  78. Yang X, Doerge DR, Teeguarden JG et al (2015) Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A. Toxicol Appl Pharmacol 289(3):442–456CrossRefGoogle Scholar
  79. Yaoi T, Itoh K, Nakamura K et al (2008) Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun 376(3):563–567CrossRefGoogle Scholar
  80. Zhang HQ, Zhang XF, Zhang LJ, Chao HH, Pan B, Feng YM, Li L, Sun XF, Shen W (2012a) Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol Biol Rep 39(5):5651–5657Google Scholar
  81. Zhang XF, Zhang LJ, Feng YN et al (2012b) Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol Biol Rep 39(9):8621–8628Google Scholar
  82. Zhang GL, Zhang XF, Feng YM et al (2013) Exposure to bisphenol A results in a decline in mouse spermatogenesis. Reprod Fertil Dev 25(6):847–859CrossRefGoogle Scholar
  83. Zhang Q, Xu X, Li T et al (2014) Exposure to bisphenol-A affects fear memory and histone acetylation of the hippocampus in adult mice. Horm Behav 65(2):106–113CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Division of Biochemical ToxicologyNational Center for Toxicological Research, Food and Drug AdministrationJeffersonUSA

Personalised recommendations