Advertisement

MicroRNA-Regulated Immune Cell Function in Obese Adipose Tissue

  • Beiyan Zhou
  • Wei Ying
  • Chuan Li
  • Anthony T. Vella
Reference work entry

Abstract

Low-grade tissue inflammation is a key driver for the development of obesity-induced insulin resistance with a remarkable accumulation of various immune cells in adipose tissues. The proinflammatory activations of immune cells play critical roles in exacerbating the tissue inflammation and insulin resistance in obesity. Here, this review features the regulatory roles of microRNAs on the maturation, recruitment, and activation of both innate and adaptive immune cells in response to obesity, which could reveal the mechanisms underlying the pathogenesis of obesity-related metabolic syndrome.

Keywords

MicroRNAs Obesity Adipose tissue inflammation Insulin resistance Macrophage polarization Hematopoiesis 

List of Abbreviations

AML1

Acute myeloid leukemia-1

ANT

Adenine nucleotide translocase

ARNT

Aryl hydrocarbon nuclear translocator

ATMs

Adipose tissue macrophages

BCR

B cell receptor

BMI

Body mass index

C/EBPσ

CCAAT/enhancer binding protein-σ

CCL2

Chemokine (C-C motif) ligand 2

CDR3

Complementary determining region 3

Dusp5

Dual-specificity protein phosphatase 5

ETS1

V-ets erythroblastosis virus E26 oncogene homolog 1 avian

Foxp3

Forkhead box P3

HFD

High-fat diet

HIF1α

Hypoxia-inducible factor 1α

IL-4

Interleukin-4

Irak1

IL-1 receptor-associated kinase 1

IRF4

Interferon regulatory factor 4

LPS

Lipopolysaccharide

LTB4

Leukotriene B4

M-CSFR

Macrophage colony-stimulating factor receptor

MAX

MYC-associated factor X

MHC II

Major histocompatibility complex class II

miRNAs

MicroRNAs

NFκB

Nuclear factor κB

Pknox1

PBX/knotted 1 homeobox 1

Ptpn11

Protein tyrosine phosphatase type 11

T2DM

Type 2 diabetes mellitus

Th1

T helper type 1

Th2

T helper type 2

Traf6

TNF receptor-associated factor 6

Tregs

T regulatory cells

VATs

Obese visceral adipose tissues

References

  1. Arner E, Mejhert N, Kulyté A, Balwierz PJ, Pachkov M, Cormont M et al (2012) Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61(8):1986–1993CrossRefGoogle Scholar
  2. Banerjee S, Xie N, Cui HC, Tan Z, Yang SZ, Icyuz M et al (2013) MicroRNA let-7c regulates macrophage polarization. J Immunol 190(12):6542–6549CrossRefGoogle Scholar
  3. Bosisio D, Polentarutti N, Sironi M, Bernasconi S, Miyake K, Webb GR et al (2002) Stimulation of toll-like receptor 4 expression in human mononuclear phagocytes by interferon-gamma: a molecular basis for priming and synergism with bacterial lipopolysaccharide. Blood 99(9):3427–3431CrossRefGoogle Scholar
  4. Chaudhuri AA, So AYL, Sinha N, Gibson WSJ, Taganov KD, O’Connell RM et al (2011) MicroRNA-125b potentiates macrophage activation. J Immunol 187(10):5062–5068CrossRefGoogle Scholar
  5. Chen Y, Buyel JJ, Hanssen MJ, Siegel F, Pan R, Naumann J et al (2016) Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun 7:11420CrossRefGoogle Scholar
  6. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46(11):2347–2355CrossRefGoogle Scholar
  7. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE et al (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549–553CrossRefGoogle Scholar
  8. DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR et al (2013) B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci USA 110(13):5133–5138CrossRefGoogle Scholar
  9. Drolet R, Richard C, Sniderman AD, Mailloux J, Fortier M, Huot C et al (2008) Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int J Obes 32(2):283–291CrossRefGoogle Scholar
  10. Eigsti RL, Sudan B, Wilson ME, Graff JW (2014) Regulation of activation-associated MicroRNA accumulation rates during monocyte-to-macrophage differentiation. J Biol Chem 289(41):28433–28447CrossRefGoogle Scholar
  11. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930–939CrossRefGoogle Scholar
  12. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL (2016) Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315(21):2284–2291CrossRefGoogle Scholar
  13. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17(2):183–194CrossRefGoogle Scholar
  14. Ghani S, Riemke P, Schönheit J, Lenze D, Stumm J, Hoogenkamp M et al (2011) Macrophage development from HSCs requires PU.1-coordinated microRNA expression. Blood 118(8):2275–2284CrossRefGoogle Scholar
  15. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445CrossRefGoogle Scholar
  16. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95(5):2409–2415CrossRefGoogle Scholar
  17. Ivashkiv LB (2013) Epigenetic regulation of macrophage polarization and function. Trends Immunol 34(5):216–223CrossRefGoogle Scholar
  18. Jiang C, Qu A, Matsubara T, Chanturiya T, Jou W, Gavrilova O et al (2011) Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 60(10):2484–2495CrossRefGoogle Scholar
  19. Johnson AM, Olefsky JM (2013) The origins and drivers of insulin resistance. Cell 152(4):673–684CrossRefGoogle Scholar
  20. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa KI, Kitazawa R et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Investig 116(6):1494–1505CrossRefGoogle Scholar
  21. Keith B, Johnson RS, Simon MC (2012) HIF1 alpha and HIF2 alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12(1):9–22CrossRefGoogle Scholar
  22. Kulyté A, Belarbi Y, Lorente-Cebrián S, Bambace C, Arner E, Daub CO et al (2014) Additive effects of microRNAs and transcription factors on CCL2 production in human white adipose tissue. Diabetes 63(4):1248–1258CrossRefGoogle Scholar
  23. Lackey DE, Olefsky JM (2016) Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 12(1):15–28CrossRefGoogle Scholar
  24. Lee KY, Gesta S, Boucher J, Wang XL, Kahn CR (2011) The differential role of Hif1beta/Arnt and the hypoxic response in adipose function, fibrosis, and inflammation. Cell Metab 14(4):491–503CrossRefGoogle Scholar
  25. Lee YS, Kim JW, Osborne O, Oh DY, Sasik R, Schenk S et al (2014) Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell 157(6):1339–1352CrossRefGoogle Scholar
  26. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129(1):147–161CrossRefGoogle Scholar
  27. Lu D, Nakagawa R, Lazzaro S, Staudacher P, Abreu-Goodger C, Henley T et al (2014) The miR-155-PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation. J Exp Med 211(11):2183–2198CrossRefGoogle Scholar
  28. Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121(6):2111–2117CrossRefGoogle Scholar
  29. Lumeng CN, Bodzin JL, Saltiel AR (2007a) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Investig 117(1):175–184CrossRefGoogle Scholar
  30. Lumeng CN, DeYoung SM, Bodzin JL, Saltiel AR (2007b) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56(1):16–23CrossRefGoogle Scholar
  31. Martinez-Nunez RT, Louafi F, Sanchez-Elsner T (2011) The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha 1 (IL13R alpha 1). J Biol Chem 286(3):1786–1794CrossRefGoogle Scholar
  32. Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den Berge IJ, Sun SM et al (2011) MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 118(4):916–925CrossRefGoogle Scholar
  33. Nguyen MTA, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A et al (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282(48):35279–35292CrossRefGoogle Scholar
  34. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M et al (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15(8):914–920CrossRefGoogle Scholar
  35. O’Connell RM, Taganov KD, Boldin MP, Cheng GH, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104(5):1604–1609CrossRefGoogle Scholar
  36. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L et al (2007) Macrophage-specific PPAR gamma controls alternative activation and improves insulin resistance. Nature 447(7148):1116–U1112CrossRefGoogle Scholar
  37. Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM (2012) Increased macrophage migration into adipose tissue in obese mice. Diabetes 61(2):346–354CrossRefGoogle Scholar
  38. Ortega FJ, Moreno M, Mercader JM, Moreno-Navarrete JM, Fuentes-Batllevell N, Sabater M et al (2015) Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants. Clin Epigenetics 7:49CrossRefGoogle Scholar
  39. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE et al (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58(3):718–725CrossRefGoogle Scholar
  40. Pescador N, Perez-Barba M, Ibarra JM, Corbaton A, Martinez-Larrad MT, Serrano-Rios M (2013) Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One 8(10):e77251CrossRefGoogle Scholar
  41. Prevention CfDCa (2014) National diabetes statistics report: estimates of diabetes and its burden in the United States. CDCGoogle Scholar
  42. Romeo GR, Lee J, Shoelson SE (2012) Metabolic syndrome, insulin resistance, and roles of inflammation – mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol 32(8):1771–1776CrossRefGoogle Scholar
  43. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Investig 116(11):3015–3025CrossRefGoogle Scholar
  44. Singer K, DelProposto J, Morris DL, Zamarron B, Mergian T, Maley N et al (2014) Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol Metab 3(6):664–675CrossRefGoogle Scholar
  45. Stittrich AB, Haftmann C, Sgouroudis E, Kuhl AA, Hegazy AN, Panse I et al (2010) The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol 11(11):1057–1062CrossRefGoogle Scholar
  46. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103(33):12481–12486CrossRefGoogle Scholar
  47. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233CrossRefGoogle Scholar
  48. Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S et al (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27(6):847–859CrossRefGoogle Scholar
  49. Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19(10):1338–1344CrossRefGoogle Scholar
  50. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808CrossRefGoogle Scholar
  51. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J et al (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15(8):921–929CrossRefGoogle Scholar
  52. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G et al (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17(5):610–617CrossRefGoogle Scholar
  53. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830CrossRefGoogle Scholar
  54. Yang L, Boldin MP, Yu Y, Liu CS, Ea CK, Ramakrishnan P et al (2012) miR-146a controls the resolution of T cell responses in mice. J Exp Med 209(9):1655–1670CrossRefGoogle Scholar
  55. Yang HY, Barbi J, Wu CY, Zheng Y, Vignali PD, Wu X et al (2016) MicroRNA-17 modulates regulatory T cell function by targeting co-regulators of the Foxp3 transcription factor. Immunity 45(1):83–93CrossRefGoogle Scholar
  56. Ying W, Tseng A, Chang RCA, Morin A, Brehm T, Triff K et al (2015) MicroRNA-223 is a crucial mediator of PPAR gamma-regulated alternative macrophage activation. J Clin Investig 125(11):4149–4159CrossRefGoogle Scholar
  57. Ying W, Tseng A, Chang RC, Wang H, Lin YL, Kanameni S et al (2016) miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep 6:20176CrossRefGoogle Scholar
  58. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817CrossRefGoogle Scholar
  59. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC et al (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527(7576):100–104CrossRefGoogle Scholar
  60. Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM, Baltimore D (2011) NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA 108(22):9184–9189CrossRefGoogle Scholar
  61. Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H et al (2012) A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125(23):2892–2903CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Beiyan Zhou
    • 1
  • Wei Ying
    • 2
  • Chuan Li
    • 1
  • Anthony T. Vella
    • 1
  1. 1.Department of Immunology, School of MedicineUniversity of Connecticut Health CenterFarmingtonUSA
  2. 2.Department of Medicine, Division of Endocrinology and MetabolismUniversity of California, San DiegoLa JollaUSA

Personalised recommendations