Proanthocyanidins and Epigenetics

  • Cinta BladéEmail author
  • Anna Arola-Arnal
  • Anna Crescenti
  • Manuel Suárez
  • Francisca I. Bravo
  • Gerard Aragonès
  • Begoña Muguerza
  • Lluís Arola
Reference work entry


Proanthocyanidins, also known as condensed tannins, are the most abundant flavonoids in the human diet. Proanthocyanidins provide beneficial health effects by mitigating inflammation, oxidative stress, and risk factors associated with metabolic syndrome. Moreover, proanthocyanidins protect against cardiovascular disease and some cancers. Though several molecular mechanisms have been suggested to explain the beneficial effects of proanthocyanidins, epigenetic mechanisms have recently emerged as important mediators of the effects of proanthocyanidins. This chapter focuses on studies showing that proanthocyanidins can regulate cell functionality by modulation of miRNA expression, DNA methylation, and histone acetylation and methylation.


Proanthocyanidins Procyanidins Flavonoids miRNAs DNA methylation Histone acetylation 

List of Abbreviations


Cardiovascular disease


DNA methyltransferase


Farnesoid X receptor


Histone acetyltransferases


Histone deacetylases


Mitogen-activated protein kinases


Metabolic syndrome




Nuclear factor kappa B


Peripheral blood mononuclear cells


  1. Angel-Morales G, Noratto G, Mertens-Talcott S (2012) Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: potential role of microRNA-126. Food Funct 3:745–752CrossRefGoogle Scholar
  2. Aragonès G, Suárez M, Ardid-Ruiz A et al (2016) Dietary proanthocyanidins boost hepatic NAD+ metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats. Sci Rep 6:24977CrossRefGoogle Scholar
  3. Arola-Arnal A, Bladé C (2011) Proanthocyanidins modulate microRNA expression in human HepG2 cells. PLoS One 6:e25982CrossRefGoogle Scholar
  4. Arranz S, Silván JM, Saura-Calixto F (2010) Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Mol Nutr Food Res 54:1646–1658CrossRefGoogle Scholar
  5. Bao L, Cai X, Zhang Z et al (2015) Grape seed procyanidin B2 ameliorates mitochondrial dysfunction and inhibits apoptosis via the AMP-activated protein kinase–silent mating type information regulation 2 homologue 1–PPARγ co-activator-1α axis in rat mesangial cells under high-dose glucosamine. Br J Nutr 113:35–44CrossRefGoogle Scholar
  6. Baselga-Escudero L, Bladé C, Ribas-Latre A et al (2012) Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol Nutr Food Res 56:1636–1646CrossRefGoogle Scholar
  7. Baselga-Escudero L, Arola-Arnal A, Pascual-Serrano A et al (2013) Chronic administration of proanthocyanidins or docosahexaenoic acid reverses the increase of miR-33a and miR-122 in dyslipidemic obese rats. PLoS One 8:e69817CrossRefGoogle Scholar
  8. Baselga-Escudero L, Blade C, Ribas-Latre A et al (2014a) Chronic supplementation of proanthocyanidins reduces postprandial lipemia and liver miR-33a and miR-122 levels in a dose-dependent manner in healthy rats. J Nutr Biochem 25:151–156CrossRefGoogle Scholar
  9. Baselga-Escudero L, Blade C, Ribas-Latre A et al (2014b) Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Res 42:882–892CrossRefGoogle Scholar
  10. Baselga-Escudero L, Pascual-Serrano A, Ribas-Latre A et al (2015) Long-term supplementation with a low dose of proanthocyanidins normalized liver miR-33a and miR-122 levels in high-fat diet-induced obese rats. Nutr Res 35:337–345CrossRefGoogle Scholar
  11. Bladé C, Arola L, Salvadó MJ (2010) Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol Nutr Food Res 54:37–59CrossRefGoogle Scholar
  12. Bladé C, Aragonès G, Arola-Arnal A et al (2016) Proanthocyanidins in health and disease. Biofactors 42:5PubMedGoogle Scholar
  13. Boqué N, de la Iglesia R, de la Garza AL et al (2013) Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns. Mol Nutr Food Res 57:1473–1478CrossRefGoogle Scholar
  14. Castell-Auví A, Cedó L, Movassat J et al (2013) Procyanidins modulate microRNA expression in pancreatic islets. J Agric Food Chem 61:355–363CrossRefGoogle Scholar
  15. Chang J, Nicolas E, Marks D et al (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1:106–113CrossRefGoogle Scholar
  16. Choi K-C, Park S, Lim BJ et al (2011) Procyanidin B3, an inhibitor of histone acetyltransferase, enhances the action of antagonist for prostate cancer cells via inhibition of p300-dependent acetylation of androgen receptor. Biochem J 433:235–244CrossRefGoogle Scholar
  17. Crescenti A, Solà R, Valls RM et al (2013) Cocoa consumption alters the global DNA methylation of peripheral leukocytes in humans with cardiovascular disease risk factors: a randomized controlled trial. PLoS One 8:e65744CrossRefGoogle Scholar
  18. Dávalos A, Fernández-Hernando C (2013) From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol Res 75:60–72CrossRefGoogle Scholar
  19. Deb G, Thakur VS, Limaye AM et al (2015) Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells. Mol Carcinog 54:485–499CrossRefGoogle Scholar
  20. Del Bas JM, Ricketts ML, Baiges I et al (2008) Dietary procyanidins lower triglyceride levels signaling through the nuclear receptor small heterodimer partner. Mol Nutr Food Res 52:1172–1181CrossRefGoogle Scholar
  21. Del Bas JM, Ricketts M-L, Vaqué M et al (2009) Dietary procyanidins enhance transcriptional activity of bile acid-activated FXR in vitro and reduce triglyceridemia in vivo in a FXR-dependent manner. Mol Nutr Food Res 53:805–814CrossRefGoogle Scholar
  22. Del Bas JM, Crescenti A, Arola-Arnal A et al (2015a) Intake of grape procyanidins during gestation and lactation impairs reverse cholesterol transport and increases atherogenic risk indexes in adult offspring. J Nutr Biochem 26:1670–1677CrossRefGoogle Scholar
  23. Del Bas JM, Crescenti A, Arola-Arnal A et al (2015b) Grape seed procyanidin supplementation to rats fed a high-fat diet during pregnancy and lactation increases the body fat content and modulates the inflammatory response and the adipose tissue metabolism of the male offspring in youth. Int J Obes 39:7–15CrossRefGoogle Scholar
  24. Derry MM, Raina K, Balaiya V et al (2013) Grape seed extract efficacy against azoxymethane-induced colon tumorigenesis in a/j mice: interlinking miRNA with cytokine signaling and inflammation. Cancer Prev Res 6:625–633CrossRefGoogle Scholar
  25. Dixon RA, Xie D-Y, Sharma SB (2005) Proanthocyanidins – a final frontier in flavonoid research? New Phytol 165:9–28CrossRefGoogle Scholar
  26. Fernández-Hernando C, Ramírez CM, Goedeke L et al (2013) MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol 33:178–185CrossRefGoogle Scholar
  27. Fernández-Iglesias A, Pajuelo D, Quesada H et al (2014) Grape seed proanthocyanidin extract improves the hepatic glutathione metabolism in obese Zucker rats. Mol Nutr Food Res 58:727–737CrossRefGoogle Scholar
  28. Fini L, Selgrad M, Fogliano V et al (2007) Annurca apple polyphenols have potent demethylating activity and can reactivate silenced tumor suppressor genes in colorectal cancer cells. J Nutr 137:2622–2628CrossRefGoogle Scholar
  29. Fini L, Piazzi G, Daoud Y et al (2011) Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract. Cancer Prev Res (Phila) 4:907–915CrossRefGoogle Scholar
  30. Fraga CG, Galleano M, Verstraeten SV et al (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Asp Med 31:435–445Google Scholar
  31. Gonzalez-Abuin N, Pinent M, Casanova-Marti A et al (2015) Procyanidins and their healthy protective effects against type 2 diabetes. Curr Med Chem 22:39–50CrossRefGoogle Scholar
  32. Gu L, Kelm MA, Hammerstone JF et al (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic. J Agric Food Chem 51:7513–7521CrossRefGoogle Scholar
  33. He F, Pan QH, Shi Y, Duan CQ (2008) Biosynthesis and genetic regulation of proanthocyanidins in plants. Molecules 13:2674–2703CrossRefGoogle Scholar
  34. Henning SM, Wang P, Said J et al (2012) Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis. J Nutr Biochem 23:1537–1542CrossRefGoogle Scholar
  35. Hernández-Alonso P, Giardina S, Salas-Salvadó J et al (2016) Chronic pistachio intake modulates circulating microRNAs related to glucose metabolism and insulin resistance in prediabetic subjects. Eur J Nutr doi:10.1007/s00394-016-1262-5Google Scholar
  36. Hollman PCH, Cassidy A, Comte B et al (2011) The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J Nutr 141:989S–1009SCrossRefGoogle Scholar
  37. Horie T, Ono K, Horiguchi M et al (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci USA 107:17321–17326CrossRefGoogle Scholar
  38. Ibars M, Ardid-Ruiz A, Suárez M et al (2016) Proanthocyanidins potentiate hypothalamic leptin/STAT3 signaling and Pomc gene expression in rats with diet-induced obesity signaling. Int J Obes 41:129CrossRefGoogle Scholar
  39. Katiyar SK, Singh T, Prasad R et al (2012) Epigenetic alterations in ultraviolet radiation-induced skin carcinogenesis: interaction of bioactive dietary components on epigenetic targets. Photochem Photobiol 88:1066–1074CrossRefGoogle Scholar
  40. Kresty LA, Clarke J, Ezell K et al (2011) MicroRNA alterations in Barrett’s esophagus, esophageal adenocarcinoma, and esophageal adenocarcinoma cell lines following cranberry extract treatment: insights for chemoprevention. J Carcinog 10:34CrossRefGoogle Scholar
  41. Kuzuhara T, Sei Y, Yamaguchi K et al (2006) DNA and RNA as new binding targets of green tea catechins. J Biol Chem 281:17446–17456CrossRefGoogle Scholar
  42. Lee WJ, Shim J-Y, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030CrossRefGoogle Scholar
  43. Lee YA, Cho EJ, Yokozawa T (2008) Protective effect of persimmon (Diospyros kaki) peel proanthocyanidin against oxidative damage under H2O2-induced cellular senescence. Biol Pharm Bull 31:1265–1269CrossRefGoogle Scholar
  44. Lei Bao, Xiaxia Cai, Xiaoqian Dai, Ye Ding, Yanfei Jiang, Yujie Li, Zhaofeng Zhang, Yong Li (2014) Grape seed proanthocyanidin extracts ameliorate podocyte injury by activating peroxisome proliferator-activated receptor-γ coactivator 1α in low-dose streptozotocin-and high-carbohydrate/high-fat diet-induced diabetic rats. Food & Function 5(8):1872Google Scholar
  45. Llópiz N, Puiggròs F, Céspedes E et al (2004) Antigenotoxic effect of grape seed procyanidin extract in Fao cells submitted to oxidative stress. J Agric Food Chem 52:1083–1087CrossRefGoogle Scholar
  46. Mao JT, Xue B, Smoake J et al (2016) MicroRNA-19a/b mediates grape seed procyanidin extract-induced anti-neoplastic effects against lung cancer. J Nutr Biochem 34:118–125CrossRefGoogle Scholar
  47. Margalef M, Pons Z, Iglesias-Carres L et al (2016) Gender-related similarities and differences in the body distribution of grape seed flavanols in rats. Mol Nutr Food Res 60:760–772CrossRefGoogle Scholar
  48. Martinez-Micaelo N, González-Abuín N, Ardèvol A et al (2012) Procyanidins and inflammation: molecular targets and health implications. Biofactors 38:257–265CrossRefGoogle Scholar
  49. McCullough ML, Peterson JJ, Patel R et al (2012) Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 95:454–464CrossRefGoogle Scholar
  50. Milenkovic D, Vanden Berghe W, Boby C et al (2014) Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLoS One 9:e95527CrossRefGoogle Scholar
  51. Neilson AP, O’Keefe SF, Bolling BW (2016) High-molecular-weight proanthocyanidins in foods: overcoming analytical challenges in pursuit of novel dietary bioactive components. Annu Rev Food Sci 7:43–64CrossRefGoogle Scholar
  52. Neveu V, Perez-Jimenez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database 2010 (0):bap024-bap024Google Scholar
  53. Ortega N, Romero M-P, Macià A et al (2008) Obtention and characterization of phenolic extracts from different cocoa sources. J Agric Food Chem 56:9621–9627CrossRefGoogle Scholar
  54. Pandey M, Shukla S, Gupta S (2010) Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer 126:2520–2533PubMedPubMedCentralGoogle Scholar
  55. Patra SK, Rizzi F, Silva A et al (2008) Molecular targets of (-)-epigallocatechin-3-gallate (EGCG): specificity and interaction with membrane lipid rafts. J Physiol Pharmacol 59:217–235PubMedGoogle Scholar
  56. Pinent M, Bladé C, Salvadó MJ et al (2006) Procyanidin effects on adipocyte-related pathologies. Crit Rev Food Sci Nutr 46:543–550CrossRefGoogle Scholar
  57. Pons Z, Margalef M, Bravo FI et al (2015) Acute administration of single oral dose of grape seed polyphenols restores blood pressure in a rat model of metabolic syndrome: role of nitric oxide and prostacyclin. Eur J Nutr 55:749–758CrossRefGoogle Scholar
  58. Prasad R, Katiyar SK (2014) Down-regulation of miRNA-106b inhibits growth of melanoma cells by promoting G1-phase cell cycle arrest and reactivation of p21/WAF1/Cip1 protein. Oncotarget 5:10636–10649CrossRefGoogle Scholar
  59. Prasad R, Katiyar SK (2015) Polyphenols from green tea inhibit the growth of melanoma cells through inhibition of class I histone deacetylases and induction of DNA damage. Genes Cancer 6:49–61PubMedPubMedCentralGoogle Scholar
  60. Puiggros F, Llópiz N, Ardévol A et al (2005) Grape seed procyanidins prevent oxidative injury by modulating the expression of antioxidant enzyme systems. J Agric Food Chem 53:6080–6086CrossRefGoogle Scholar
  61. Rasmussen SE, Frederiksen H, Krogholm KS et al (2005) Dietary proanthocyanidins: occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol Nutr Food Res 49:159–174CrossRefGoogle Scholar
  62. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661CrossRefGoogle Scholar
  63. Rothwell JA, Urpi-Sarda M, Boto-Ordonez M, Knox C, Llorach R, Eisner R, Cruz J, Neveu V, Wishart D, Manach C, Andres-Lacueva C, Scalbert A (2012) Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database 2012 (0):bas031–bas031Google Scholar
  64. Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remon A, M’Hiri N, Garcia-Lobato P, Manach C, Knox C, Eisner R, Wishart DS, Scalbert A (2013) Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013 (0):bat070–bat070Google Scholar
  65. Salvadó MJ, Casanova E, Fernández-iglesias A et al (2015) Roles of proanthocyanidin rich extracts in obesity. Food Funct 6:1053–1071CrossRefGoogle Scholar
  66. Shilpi A, Parbin S, Sengupta D et al (2015) Mechanisms of DNA methyltransferase-inhibitor interactions: Procyanidin B2 shows new promise for therapeutic intervention of cancer. Chem Biol Interact 233:122–138CrossRefGoogle Scholar
  67. Sinha S, Shukla S, Khan S et al (2015) Epigenetic reactivation of p21CIP1/WAF1 and KLOTHO by a combination of bioactive dietary supplements is partially ERα-dependent in ERα-negative human breast cancer cells. Mol Cell Endocrinol 406:102–114CrossRefGoogle Scholar
  68. Taliaferro JM, Aspden JL, Bradley T et al (2013) Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. Genes Dev 27:378–389CrossRefGoogle Scholar
  69. Thakur VS, Gupta K, Gupta S (2012) Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases. Carcinogenesis 33:377–384CrossRefGoogle Scholar
  70. Tsoukas MA, Ko BJ, Witte TR et al (2015) Dietary walnut suppression of colorectal cancer in mice: mediation by miRNA patterns and fatty acid incorporation. J Nutr Biochem 26:776–783CrossRefGoogle Scholar
  71. Vaid M, Prasad R, Singh T et al (2012) Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators. Toxicol Appl Pharmacol 263:122–130CrossRefGoogle Scholar
  72. Vogiatzoglou A, Mulligan AA, Luben RN et al (2014) Assessment of the dietary intake of total flavan-3-ols, monomeric flavan-3-ols, proanthocyanidins and the aflavins in the European Union. Br J Nutr 111:1463–1473CrossRefGoogle Scholar
  73. Volate SR, Muga SJ, Issa AY et al (2009) Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog 48:920–933CrossRefGoogle Scholar
  74. Wang L-S, Arnold M, Huang Y-W et al (2011a) Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: a phase I pilot study. Clin Cancer Res 17:598–610CrossRefGoogle Scholar
  75. Wang Y, Chung S-J, Song WO et al (2011b) Estimation of daily proanthocyanidin intake and major food sources in the US diet. J Nutr 141:447–452CrossRefGoogle Scholar
  76. Xiao J, Kai G (2012) A review of dietary polyphenol-plasma protein interactions: characterization, influence on the bioactivity, and structure-affinity relationship. Crit Rev Food Sci Nutr 52:85–101CrossRefGoogle Scholar
  77. Yokozawa T, Lee YA, Zhao Q et al (2009) Persimmon oligomeric proanthocyanidins extend life span of senescence-accelerated mice. J Med Food 12:1199–1205CrossRefGoogle Scholar
  78. Yuasa Y, Nagasaki H, Akiyama Y et al (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int Cancer 124:2677–2682CrossRefGoogle Scholar
  79. Zhu W, Zou B, Nie R et al (2015) A-type ECG and EGCG dimers disturb the structure of 3T3-L1 cell membrane and strongly inhibit its differentiation by targeting peroxisome proliferator-activated receptor with miR-27 involved mechanism. J Nutr Biochem 26:1124–1135CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cinta Bladé
    • 1
    Email author
  • Anna Arola-Arnal
    • 1
  • Anna Crescenti
    • 2
  • Manuel Suárez
    • 1
  • Francisca I. Bravo
    • 1
  • Gerard Aragonès
    • 1
  • Begoña Muguerza
    • 1
  • Lluís Arola
    • 1
    • 2
  1. 1.Nutrigenomics Research Group, Department of Biochemistry and BiotechnologyUniversitat Rovira i Virgili (URV)TarragonaSpain
  2. 2.Nutrition and Health Research Group, Technological Center for Nutrition and Health (EURECAT-CTNS), Tecnio, Campus of International Excellence Southern Catalonia (CEICS)ReusSpain

Personalised recommendations