Advertisement

Epigenetics and Aging

  • Carolina Soriano-TárragaEmail author
  • Jordi Jiménez-Conde
  • Jaume Roquer
Reference work entry

Abstract

Age is a major risk factor for many of the most common medical conditions and chronic diseases, such as cardiovascular disease and cancer, and the world’s population is aging faster than ever before. Many of these chronic diseases can be prevented or delayed by engaging in healthy behaviors such as physical activity and good nutrition.

Age-related changes in DNA methylation are well documented, and chronological age can be predicted using methylation measures from multiple CpGs across the genome. The difference between actual chronological age and methylation-predicted age (also called biological age) can be used to determine whether DNA methylation consistently predicts a higher or lower age than expected. This biological age is influenced by lifestyle parameters that are better than chronological age at predicting all-cause mortality. A key goal of any health system is to prolong a healthy life into old age. Epigenetics can be modulated by environmental exposure, including lifestyle choices.

Keywords

Epigenetics Genetics Aging Biological age Healthy aging DNA methylation Epigenetic clock Epigenetic drift Lifestyle Caloric restriction 

List of Abbreviations

CR

Caloric restriction

DM

Diabetes mellitus

DMR

Differential methylated regions

DNAm

DNA methylation

HIV

Human immunodeficiency virus

LAD

Lamin-associated domain

mRNA

Messenger RNA

ncRNA

Noncoding RNA

ROS

Reactive oxygen species

WHO

World Health Organization

References

  1. Abdelmohsen K, Gorospe M (2015) Noncoding RNA control of cellular senescence. Wiley Interdiscip Rev RNA 6:615–629CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agodi A, Barchitta M, Quattrocchi A, Maugeri A, Canto C, Marchese AE, Vinciguerra M (2015) Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population. Genes Nutr 10:480CrossRefPubMedGoogle Scholar
  3. Alegría-Torres JA, Baccarelli A, Bollati V (2011) Epigenetics and lifestyle. Epigenomics 3:267–277CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anton S, Leeuwenburgh C (2013) Fasting or caloric restriction for healthy aging. Exp Gerontol 48:1003–1005CrossRefPubMedPubMedCentralGoogle Scholar
  5. Artandi SE (2006) Telomeres, telomerase, and human disease. N Engl J Med 355:1195–1197CrossRefPubMedGoogle Scholar
  6. Aunan JR, Watson MM, Hagland HR, Søreide K (2016) Molecular and biological hallmarks of ageing. Br J Surg 103:e29–e46CrossRefPubMedGoogle Scholar
  7. Bell JT, Tsai P-C, Yang T-P, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin S-Y, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS, Dermitzakis ET, McCarthy MI, Mill J, Spector TD, Deloukas P, Deloukas P (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8:e1002629CrossRefPubMedPubMedCentralGoogle Scholar
  8. Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Stamatoyannopoulos JA, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SCJ, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Dutta A, Guigó R, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Flicek P, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermüller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung W-K, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Dermitzakis ET, Margulies EH, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei C-L, Ruan Y, Snyder M, Birney E, Struhl K, Gerstein M, Antonarakis SE, Gingeras TR, Brown JB, Flicek P, Fu Y, Keefe D, Birney E, Denoeud F, Gerstein M, Green ED, Kapranov P, Karaöz U, Myers RM, Noble WS, Reymond A, Rozowsky J, Struhl K, Siepel A, Stamatoyannopoulos JA, Taylor CM, Taylor J, Thurman RE, Tullius TD, Washietl S, Zheng D, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Collins FS, Margulies EH, Cooper GM, Asimenos G, Thomas DJ, Dewey CN, Siepel A, Birney E, Keefe D, Hou M, Taylor J, Nikolaev S, Montoya-Burgos JI, Löytynoja A, Whelan S, Pardi F, Massingham T, Brown JB, Huang H, Zhang NR, Bickel P, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Sequencing Program, N.C, Human Genome Sequencing Center, B.C. of M, Genome Sequencing Center, W.U, Broad Institute, A, Oakland Research Institute, C.H, Gerstein M, Antonarakis SE, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Pachter L, Green ED, Sidow A, Weng Z, Trinklein ND, Fu Y, Zhang ZD, Karaöz U, Barrera L, Stuart R, Zheng D, Ghosh S, Flicek P, King DC, Taylor J, Ameur A, Enroth S, Bieda MC, Koch CM, Hirsch HA, Wei C-L, Cheng J, Kim J, Bhinge AA, Giresi PG, Jiang N, Liu J, Yao F, Sung W-K, Chiu KP, Vega VB, Lee CWH, Ng P, Shahab A, Sekinger EA, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Clelland GK, Wilcox S, Dillon SC, Andrews RM, Fowler JC, Couttet P, James KD, Lefebvre GC, Bruce AW, Dovey OM, Ellis PD, Dhami P, Langford CF, Carter NP, Vetrie D, Kapranov P, Nix DA, Bell I, Patel S, Rozowsky J, Euskirchen G, Hartman S, Lian J, Wu J, Urban AE, Kraus P, Van Calcar S, Heintzman N, Hoon Kim T, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JNS, Yu Y, Birney E, Weissman S, Ruan Y, Lieb JD, Iyer VR, Green RD, Gingeras TR, Wadelius C, Dunham I, Struhl K, Hardison RC, Gerstein M, Farnham PJ, Myers RM, Ren B, Snyder M, Thomas DJ, Rosenbloom K, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Haussler D, Kent WJ, Dermitzakis ET, Armengol L, Bird CP, Clark TG, Cooper GM, de Bakker PIW, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Thomas DJ, Woodroffe A, Batzoglou S, Davydov E, Dimas A, Eyras E, Hallgrímsdóttir IB, Hardison RC, Huppert J, Sidow A, Taylor J, Trumbower H, Zody MC, Guigó R, Mullikin JC, Abecasis GR, Estivill X, Birney E, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VVB, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816CrossRefPubMedGoogle Scholar
  9. Bloom DE (2011) 7 billion and counting. Science 333:562–569CrossRefPubMedGoogle Scholar
  10. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 130:234–239CrossRefPubMedGoogle Scholar
  11. Brand FN, Kiely DK, Kannel WB, Myers RH (1992) Family patterns of coronary heart disease mortality: the Framingham longevity study. J Clin Epidemiol 45:169–174CrossRefPubMedGoogle Scholar
  12. Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H (2011) Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 88:450–457CrossRefPubMedPubMedCentralGoogle Scholar
  13. Broer L, Buchman AS, Deelen J, Evans DS, Faul JD, Lunetta KL, Sebastiani P, Smith JA, Smith AV, Tanaka T, Yu L, Arnold AM, Aspelund T, Benjamin EJ, De Jager PL, Eirkisdottir G, Evans DA, Garcia ME, Hofman A, Kaplan RC, Kardia SLR, Kiel DP, Oostra BA, Orwoll ES, Parimi N, Psaty BM, Rivadeneira F, Rotter JI, Seshadri S, Singleton A, Tiemeier H, Uitterlinden AG, Zhao W, Bandinelli S, Bennett DA, Ferrucci L, Gudnason V, Harris TB, Karasik D, Launer LJ, Perls TT, Slagboom PE, Tranah GJ, Weir DR, Newman AB, van Duijn CM, Murabito JM (2015) GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J Gerontol Ser A Biol Med Sci 70:110–118CrossRefGoogle Scholar
  14. Brooks-Wilson AR (2013) Genetics of healthy aging and longevity. Hum Genet 132:1323–1338CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai P-C, Roetker NS, Just AC, Demerath EW, Guan W, Bressler J, Fornage M, Studenski S, Vandiver AR, Moore AZ, Tanaka T, Kiel DP, Liang L, Vokonas P, Schwartz J, Lunetta KL, Murabito JM, Bandinelli S, Hernandez DG, Melzer D, Nalls M, Pilling LC, Price TR, Singleton AB, Gieger C, Holle R, Kretschmer A, Kronenberg F, Kunze S, Linseisen J, Meisinger C, Rathmann W, Waldenberger M, Visscher PM, Shah S, Wray NR, McRae AF, Franco OH, Hofman A, Uitterlinden AG, Absher D, Assimes T, Levine ME, Lu AT, Tsao PS, Hou L, Manson JE, Carty CL, LaCroix AZ, Reiner AP, Spector TD, Feinberg AP, Levy D, Baccarelli A, van Meurs J, Bell JT, Peters A, Deary IJ, Pankow JS, Ferrucci L, Horvath S (2016) DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8:1844–1865CrossRefPubMedPubMedCentralGoogle Scholar
  16. Christensen K, Doblhammer G, Rau R, Vaupel JW (2009) Ageing populations: the challenges ahead. Lancet (London) 374:1196–1208CrossRefGoogle Scholar
  17. Conboy IM, Rando TA (2012) Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle (Georgetown) 11:2260–2267CrossRefPubMedCentralGoogle Scholar
  18. De Benedictis G, Rose G, Carrieri G, De Luca M, Falcone E, Passarino G, Bonafe M, Monti D, Baggio G, Bertolini S, Mari D, Mattace R, Franceschi C (1999) Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J 13:1532–1536CrossRefPubMedGoogle Scholar
  19. Deelen J, Beekman M, Uh H-W, Helmer Q, Kuningas M, Christiansen L, Kremer D, van der Breggen R, Suchiman HED, Lakenberg N, van den Akker EB, Passtoors WM, Tiemeier H, van Heemst D, de Craen AJ, Rivadeneira F, de Geus EJ, Perola M, van der Ouderaa FJ, Gunn DA, Boomsma DI, Uitterlinden AG, Christensen K, van Duijn CM, Heijmans BT, Houwing-Duistermaat JJ, Westendorp RGJ, Slagboom PE (2011) Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10:686–698CrossRefPubMedPubMedCentralGoogle Scholar
  20. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L-H, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489:101–108CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dou Z, Xu C, Donahue G, Shimi T, Pan J-A, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP, Catanzaro JM, Daniel Ricketts M, Lamark T, Adam SA, Marmorstein R, Zong W-X, Johansen T, Goldman RD, Adams PD, Berger SL (2015) Autophagy mediates degradation of nuclear lamina. Nature 527:105–109CrossRefPubMedPubMedCentralGoogle Scholar
  22. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874CrossRefPubMedGoogle Scholar
  23. Feil R, Fraga MF (2011) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109CrossRefGoogle Scholar
  24. Fenech M (2012) Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat Res 733:21–33CrossRefPubMedGoogle Scholar
  25. Florath I, Butterbach K, Heiss J, Bewerunge-Hudler M, Zhang Y, Schöttker B, Brenner H (2016) Type 2 diabetes and leucocyte DNA methylation: an epigenome-wide association study in over 1,500 older adults. Diabetologia 59(1):130–8Google Scholar
  26. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu Y-Z, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609CrossRefPubMedGoogle Scholar
  27. Friedberg EC (2003) DNA damage and repair. Nature 421:436–440CrossRefPubMedGoogle Scholar
  28. Fries JF (2005) The compression of morbidity. 1983. Milbank Q 83:801–823CrossRefPubMedPubMedCentralGoogle Scholar
  29. Greco S, Gorospe M, Martelli F (2015) Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol 83:142–155CrossRefPubMedPubMedCentralGoogle Scholar
  30. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, Han S, Banko MR, Gozani O, Brunet A (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466:383–387CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gregg SQ, Gutiérrez V, Robinson AR, Woodell T, Nakao A, Ross MA, Michalopoulos GK, Rigatti L, Rothermel CE, Kamileri I, Garinis GA, Stolz DB, Niedernhofer LJ (2012) A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology (Baltimore) 55:609–621CrossRefGoogle Scholar
  32. Gruber R, Koch H, Doll BA, Tegtmeier F, Einhorn TA, Hollinger JO (2006) Fracture healing in the elderly patient. Exp Gerontol 41:1080–1093CrossRefPubMedGoogle Scholar
  33. Han S, Brunet A (2012) Histone methylation makes its mark on longevity. Trends Cell Biol 22:42–49CrossRefPubMedGoogle Scholar
  34. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367CrossRefPubMedGoogle Scholar
  35. Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21CrossRefPubMedGoogle Scholar
  36. Hayflick L (2000) The future of ageing. Nature 408:267–269CrossRefPubMedGoogle Scholar
  37. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA 109:10522–10527CrossRefPubMedGoogle Scholar
  38. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115CrossRefPubMedPubMedCentralGoogle Scholar
  39. Horvath S, Levine AJ (2015) HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis 212:1563–1573CrossRefPubMedPubMedCentralGoogle Scholar
  40. Horvath S, Ritz BR (2015) Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging 7:1130–1142CrossRefPubMedPubMedCentralGoogle Scholar
  41. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schönfels W, Ahrens M, Heits N, Bell JT, Tsai P-C, Spector TD, Deloukas P, Siebert R, Sipos B, Becker T, Röcken C, Schafmayer C, Hampe J (2014) Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA 111:15538–15543CrossRefPubMedGoogle Scholar
  42. Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, Di Blasio AM, Giuliani C, Tung S, Vinters HV, Franceschi C (2015) Accelerated epigenetic aging in down syndrome. Aging Cell 14:491–495CrossRefPubMedPubMedCentralGoogle Scholar
  43. Houtkooper RH, Williams RW, Auwerx J (2010) Metabolic networks of longevity. Cell 142:9–14CrossRefPubMedGoogle Scholar
  44. Kanherkar RR, Bhatia-Dey N, Csoka AB (2014) Epigenetics across the human lifespan. Front Cell Dev Biol 2:49PubMedPubMedCentralGoogle Scholar
  45. Kato M, Slack FJ (2013) Ageing and the small, non-coding RNA world. Ageing Res Rev 12:429–435CrossRefPubMedGoogle Scholar
  46. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512CrossRefPubMedPubMedCentralGoogle Scholar
  47. Khan SS, Singer BD, Vaughan DE (2017) Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 16:624CrossRefPubMedPubMedCentralGoogle Scholar
  48. Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10:205–215CrossRefPubMedGoogle Scholar
  49. Levine ME, Lu AT, Bennett DA, Horvath S (2015) Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging 7:1198–1211CrossRefPubMedPubMedCentralGoogle Scholar
  50. Li Y, Tollefsbol TO (2016) Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases. Epigenomics 8:1637–1651CrossRefPubMedPubMedCentralGoogle Scholar
  51. Li Y, Daniel M, Tollefsbol TO (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9:98CrossRefPubMedPubMedCentralGoogle Scholar
  52. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lu F, Guan H, Gong B, Liu X, Zhu R, Wang Y, Qian J, Zhou T, Lan X, Wang P, Lin Y, Ma S, Lin H, Zhu X, Chen R, Zhu X, Shi Y, Yang Z (2014) Genetic variants in PVRL2-TOMM40-APOE region are associated with human longevity in a Han Chinese population. PLoS One 9:e99580CrossRefPubMedPubMedCentralGoogle Scholar
  54. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR, Pattie A, Corley J, Murphy L, Martin NG, Montgomery GW, Feinberg AP, Fallin MD, Multhaup ML, Jaffe AE, Joehanes R, Schwartz J, Just AC, Lunetta KL, Murabito JM, Starr JM, Horvath S, Baccarelli AA, Levy D, Visscher PM, Wray NR, Deary IJ (2015a) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16:25CrossRefPubMedPubMedCentralGoogle Scholar
  55. Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE, Gibson J, Redmond P, Cox SR, Pattie A, Corley J, Taylor A, Murphy L, Starr JM, Horvath S, Visscher PM, Wray NR, Deary IJ (2015b) The epigenetic clock is correlated with physical and cognitive fitness in the Lothian birth cohort 1936. Int J Epidemiol 44:1388–1396CrossRefPubMedPubMedCentralGoogle Scholar
  56. Marioni RE, Harris SE, Shah S, McRae AF, von Zglinicki T, Martin-Ruiz C, Wray NR, Visscher PM, Deary IJ (2016) The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int J Epidemiol 45:424–432CrossRefPubMedCentralGoogle Scholar
  57. Martino D, Loke YJ, Gordon L, Ollikainen M, Cruickshank MN, Saffery R, Craig JM (2013) Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biol 14:R42CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM (2017) Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 8:14063CrossRefPubMedPubMedCentralGoogle Scholar
  59. McClay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, Hudson AD, Harada A, Hultman CM, Magnusson PKE, Sullivan PF, Van Den Oord EJCG (2014) A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet 23:1175–1185CrossRefPubMedGoogle Scholar
  60. Michel J-P, Newton JL, Kirkwood TBL (2008) Medical challenges of improving the quality of a longer life. JAMA 299:688CrossRefPubMedGoogle Scholar
  61. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452CrossRefPubMedPubMedCentralGoogle Scholar
  62. Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE (2013) The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 12:661–684CrossRefPubMedGoogle Scholar
  63. Newman AB, Glynn NW, Taylor CA, Sebastiani P, Perls TT, Mayeux R, Christensen K, Zmuda JM, Barral S, Lee JH, Simonsick EM, Walston JD, Yashin AI, Hadley E (2011) Health and function of participants in the long life family study: a comparison with other cohorts. Aging 3:63–76CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pal S, Tyler JK (2016) Epigenetics and aging. Sci Adv 2:e1600584CrossRefPubMedPubMedCentralGoogle Scholar
  65. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of Proteostasis deficiency. Annu Rev Biochem 78:959–991CrossRefPubMedGoogle Scholar
  66. Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea-Drinkwater M, Kang S, Joyce E, Nicoli J, Benson E, Kunkel LM, Perls T (2001) A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci 98:10505–10508CrossRefPubMedGoogle Scholar
  67. Roth GS, Ingram DK, Lane MA (2001) Caloric restriction in primates and relevance to humans. Ann N Y Acad Sci 928:305–315CrossRefPubMedGoogle Scholar
  68. Sastre J, Pallardó FV, García de la Asunción J, Viña J (2000) Mitochondria, oxidative stress and aging. Free Radic Res 32:189–198CrossRefPubMedGoogle Scholar
  69. Sayols-Baixeras S, Lluís-Ganella C, Subirana I, Salas LA, Vilahur N, Corella D, Muñoz D, Segura A, Jimenez-Conde J, Moran S, Soriano-Tárraga C, Roquer J, Lopez-Farré A, Marrugat J, Fitó M, Elosua R (2015) Identification of a new locus and validation of previously reported loci showing differential methylation associated with smoking. The REGICOR study. Epigenetics 10:1156CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sayols-Baixeras, S. et al. (2016) Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach. The REGICOR study. Human Molecular Genetics 25, ddw285Google Scholar
  71. Sebastiani P, Solovieff N, DeWan AT, Walsh KM, Puca A, Hartley SW, Melista E, Andersen S, Dworkis DA, Wilk JB, Myers RH, Steinberg MH, Montano M, Baldwin CT, Hoh J, Perls TT (2012) Genetic signatures of exceptional longevity in humans. PLoS One 7:e29848CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sebastiani P, Bae H, Sun FX, Andersen SL, Daw EW, Malovini A, Kojima T, Hirose N, Schupf N, Puca A, Perls TT (2013) Meta-analysis of genetic variants associated with human exceptional longevity. Aging 5:653–661CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sehl ME, Henry JE, Storniolo AM, Ganz PA, Horvath S (2017) DNA methylation age is elevated in breast tissue of healthy women. Breast Cancer Res Treat 164:209–219CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sen P, Shah PP, Nativio R, Berger SL (2016) Epigenetic mechanisms of longevity and aging. Cell 166:822–839CrossRefPubMedPubMedCentralGoogle Scholar
  75. Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K, Aggarwala V, Cruickshanks HA, Rai TS, McBryan T, Gregory BD, Adams PD, Berger SL (2013) Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27:1787–1799CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM (2010) Aging of the innate immune system. Curr Opin Immunol 22:507–513CrossRefPubMedPubMedCentralGoogle Scholar
  77. Shringarpure R, Davies KJA (2002) Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 32:1084–1089CrossRefPubMedGoogle Scholar
  78. Siebold AP, Banerjee R, Tie F, Kiss DL, Moskowitz J, Harte PJ (2010) Polycomb repressive complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc Natl Acad Sci USA 107:169–174CrossRefPubMedGoogle Scholar
  79. Soriano-Tárraga C, Jiménez-Conde J, Giralt-Steinhauer E, Mola-Caminal M, Vivanco-Hidalgo RM, Ois A, Rodríguez-Campello A, Cuadrado-Godia E, Sayols-Baixeras S, Elosua R, Roquer J (2016) Epigenome-wide association study identifies TXNIP gene associated with type 2 diabetes mellitus and sustained hyperglycemia. Hum Mol Genet 25(3):609–19Google Scholar
  80. Soriano-Tárraga C, Giralt-Steinhauer E, Mola-Caminal M, Vivanco-Hidalgo R, Ois A, Rodríguez-Campello A, Cuadrado-Godia E, Sayols-Baixeras S, Elosua R, Roquer J, Jiménez-Conde J (2016) Ischemic stroke patients are biologically older than their chronological age. Aging 8:2655–2666CrossRefPubMedPubMedCentralGoogle Scholar
  81. Soriano-Tárraga C, Mola-Caminal M, Giralt-Steinhauer E, Ois A, Rodríguez-Campello A, Cuadrado-Godia E, Gómez-González A, Vivanco-Hidalgo RM, Fernández-Cadenas I, Cullell N, Roquer J, Jiménez-Conde J (2017) Biological age is better than chronological as predictor of 3-month outcome in ischemic stroke. Neurology 89:830–836CrossRefPubMedGoogle Scholar
  82. Soriano-Tárraga C, Giralt-Steinhauer E, Mola-Caminal M, Ois A, Rodríguez-Campello A, Cuadrado-Godia E, Fernández-Cadenas I, Cullell N, Roquer J, Jiménez-Conde J (2018) Biological age is a predictor of mortality in ischemic stroke. Sci Rep 8:4148CrossRefPubMedPubMedCentralGoogle Scholar
  83. Szafranski K, Abraham KJ, Mekhail K (2015) Non-coding RNA in neural function, disease, and aging. Front Genet 6:87CrossRefPubMedPubMedCentralGoogle Scholar
  84. Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, Suchiman HED, Slagboom PE, Boomsma DI, Heijmans BT (2012) Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 11:694–703CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tanaka M, Gong J-S, Zhang J, Yoneda M, Yagi K (1998) Mitochondrial genotype associated with longevity. Lancet 351:185–186CrossRefPubMedGoogle Scholar
  86. Teschendorff AE, West J, Beck S (2013) Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet 22:R7–R15CrossRefPubMedPubMedCentralGoogle Scholar
  87. Tosato M, Zamboni V, Ferrini A, Cesari M (2007) The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2:401–412PubMedPubMedCentralGoogle Scholar
  88. Tsurumi A, Li W (2012) Global heterochromatin loss. Epigenetics 7:680–688CrossRefPubMedPubMedCentralGoogle Scholar
  89. Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A (2015) The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 562:8–15CrossRefPubMedGoogle Scholar
  90. van Dongen J, Nivard MG, Willemsen G, Hottenga J-J, Helmer Q, Dolan CV, Ehli EA, Davies GE, van Iterson M, Breeze CE, Beck S, Hoen PAC’t, Pool R, van Greevenbroek MMJ, Stehouwer CDA, van der Kallen CJH, Schalkwijk CG, Wijmenga C, Zhernakova S, Tigchelaar EF, Beekman M, Deelen J, van Heemst D, Veldink JH, van den Berg LH, van Duijn CM, Hofman BA, Uitterlinden AG, Jhamai PM, Verbiest M, Verkerk M, van der Breggen R, van Rooij J, Lakenberg N, Mei H, Bot J, Zhernakova DV, van’t Hof P, Deelen P, Nooren I, Moed M, Vermaat M, Luijk R, Bonder MJ, van Dijk F, van Galen M, Arindrarto W, Kielbasa SM, Swertz MA, van Zwet EW, Isaacs A, Franke L, Suchiman HE, Jansen R, van Meurs JB, Heijmans BT, Slagboom PE, Boomsma DI (2016) Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat Commun 7:11115CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wang T, Tsui B, Kreisberg JF, Robertson NA, Gross AM, Yu MK, Carter H, Brown-Borg HM, Adams PD, Ideker T (2017) Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol 18:57CrossRefPubMedPubMedCentralGoogle Scholar
  92. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jöckel K-H, Erbel R, Mühleisen TW, Zenke M, Brümmendorf TH, Wagner W (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24CrossRefPubMedPubMedCentralGoogle Scholar
  93. Weinert BT, Timiras PS (2003) Invited review: theories of aging: table 1. J Appl Physiol 95:1706–1716CrossRefPubMedGoogle Scholar
  94. Westendorp RGJ, Van Heemst D, Rozing MP, Frölich M, Mooijaart SP, Blauw G-J, Beekman M, Heijmans BT, De Craen AJM, Slagboom PE, Leiden Longevity Study Group (2009) Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: the Leiden Longevity Study. J Am Geriatr Soc 57:1634–1637CrossRefPubMedGoogle Scholar
  95. WHO (2015a) World report on ageing and health [WWW document]. http://www.who.int/ageing/publications/world-report-2015/en/
  96. WHO (2015b) Global health estimates 2013: deaths by cause, age, sex and regional grouping, 2000–2012 [WWW document]. http://www.who.int/healthinfo/global_burden_disease/en/
  97. Yeh J-K, Wang C-Y (2016) Telomeres and telomerase in cardiovascular diseases. Genes 7:58CrossRefPubMedCentralGoogle Scholar
  98. Zeilinger S, Kühnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, Weidinger S, Lattka E, Adamski J, Peters A, Strauch K, Waldenberger M, Illig T (2013) Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8:e63812CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zheng SC, Widschwendter M, Teschendorff AE (2016) Epigenetic drift, epigenetic clocks and cancer risk. Epigenomics 8:705–719CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carolina Soriano-Tárraga
    • 1
    Email author
  • Jordi Jiménez-Conde
    • 2
  • Jaume Roquer
    • 3
    • 4
  1. 1.Neurovascular Research GroupIMIM (Institut Hospital del Mar d’Investigacions Mèdiques)BarcelonaSpain
  2. 2.Department of Neurology, Hospital del Mar; Neurovascular Research GroupIMIM (Institut Hospital del Mar d’Investigacions Mèdiques)BarcelonaSpain
  3. 3.Head of the Department of Neurology, Hospital del Mar; Neurovascular Research GroupIMIM (Institut Hospital del Mar d’Investigacions Mèdiques)BarcelonaSpain
  4. 4.Department of MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations