Skip to main content

Mass-Radius Relations of Giant Planets: The Radius Anomaly and Interior Models

Abstract

Thousands of worlds are now known, and hundreds of giant planets (albeit mostly with short orbital periods) have been assessed with accurate measurements of their masses and radii. As a consequence, a large range of planetary bulk densities have been charted, giving important clues to the compositions, the interior structures, and the geophysical processes that typify extrasolar planets. Moreover, two decades of investigations – both observational and theoretical – have generated a compound of important insights and enduring mysteries. Taken broadly, the observations and models indicate that most giant planets have an inhomogeneous structure consisting of a heavy element core and a hydrogen-helium envelope which is itself divided into a liquid metallic inner component and a molecular outer component. This basic architecture is consistent with the core-accretion theory of giant planet formation. Simultaneously, however, many short-period giant planets exhibit anomalously large radii, which are commonly interpreted as indicating the existence of a structurally important source (or sources) of interior heating. We review the range of physical mechanisms that can potentially generate these inflated radii, and we discuss the directions by which progress can potentially be made with future research.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-55333-7_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   1,199.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-55333-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Arras P, Socrates A (2010) Thermal tides in fluid extrasolar planets. ApJ 714:1–12

    ADS  CrossRef  Google Scholar 

  • Baraffe I, Chabrier G, Barman T (2010) The physical properties of extra-solar planets. Rep Prog Phys 73(1):016901

    ADS  CrossRef  Google Scholar 

  • Batalha NM, Rowe JF, Bryson ST et al (2013) Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. ApJS 204:24

    Google Scholar 

  • Batygin K, Stevenson DJ (2010) Inflating hot jupiters with Ohmic dissipation. ApJ 714:L238–L243

    ADS  CrossRef  Google Scholar 

  • Batygin K, Bodenheimer P, Laughlin G (2009) Determination of the interior structure of transiting planets in multiple-planet systems. ApJ 704:L49–L53

    ADS  CrossRef  Google Scholar 

  • Batygin K, Stevenson DJ, Bodenheimer PH (2011) Evolution of ohmically heated hot jupiters. ApJ 738:1

    ADS  CrossRef  Google Scholar 

  • Batygin K, Bodenheimer PH, Laughlin GP (2016) In situ formation and dynamical evolution of hot jupiter systems. ApJ 829:114

    ADS  CrossRef  Google Scholar 

  • Becker JC, Batygin K (2013) Dynamical measurements of the interior structure of exoplanets. ApJ 778:100

    ADS  CrossRef  Google Scholar 

  • Bodenheimer P, Hubickyj O, Lissauer JJ (2000) Models of the in situ formation of detected extrasolar Giant planets. Icarus 143:2–14

    ADS  CrossRef  Google Scholar 

  • Bodenheimer P, Lin DNC, Mardling RA (2001) On the tidal inflation of short-period extrasolar planets. ApJ 548:466–472

    ADS  CrossRef  Google Scholar 

  • Bodenheimer P, Laughlin G, Lin DNC (2003) On the radii of extrasolar Giant planets. ApJ 592:555–563

    ADS  CrossRef  Google Scholar 

  • Boley AC, Granados Contreras AP, Gladman B (2016) The in situ formation of giant planets at short orbital periods. ApJ 817:L17

    ADS  CrossRef  Google Scholar 

  • Bolton SJ, Adriani A, Adumitroaie V et al (2017) Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the juno spacecraft. Science 356(6340):821–825. http://science.sciencemag.org/content/356/6340/821

    ADS  CrossRef  Google Scholar 

  • Buhler PB, Knutson HA, Batygin K et al (2016) Dynamical constraints on the core Mass of hot Jupiter HAT-P-13b. ApJ 821:26

    ADS  CrossRef  Google Scholar 

  • Burrows A, Orton G (2010) Giant planet atmospheres. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, pp 419–440. http://adsabs.harvard.edu/abs/2010exop.book..419B

  • Burrows A, Hubeny I, Budaj J, Hubbard WB (2007) Possible solutions to the radius anomalies of transiting Giant planets. ApJ 661:502–514

    ADS  CrossRef  Google Scholar 

  • Butler RP, Vogt SS, Laughlin G et al (2017) The LCES HIRES/Keck precision radial velocity exoplanet survey. AJ 153:208

    ADS  CrossRef  Google Scholar 

  • Chabrier G, Baraffe I (2007) Heat transport in Giant (Exo)planets: a new perspective. ApJ 661:L81–L84

    ADS  CrossRef  Google Scholar 

  • Charbonneau D, Brown TM, Latham DW, Mayor M (2000) Detection of planetary transits across a Sun-like Star. ApJ 529:L45–L48

    ADS  CrossRef  Google Scholar 

  • Charbonneau D, Brown TM, Noyes RW, Gilliland RL (2002) Detection of an extrasolar planet atmosphere. ApJ 568:377–384

    ADS  CrossRef  Google Scholar 

  • Chiang E, Laughlin G (2013) The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. MNRAS 431:3444–3455

    ADS  CrossRef  Google Scholar 

  • Correia ACM (2014) Transit light curve and inner structure of close-in planets. A&A 570:L5

    ADS  CrossRef  Google Scholar 

  • Cumming A, Butler RP, Marcy GW et al (2008) The Keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. PASP 120:531

    ADS  CrossRef  Google Scholar 

  • Demarcus WC (1958) The constitution of Jupiter and Saturn. AJ 63:2

    ADS  CrossRef  Google Scholar 

  • Deming LD, Seager S (2017) Illusion and reality in the atmospheres of exoplanets. J Geophys Res (Planets) 122:53–75

    ADS  CrossRef  Google Scholar 

  • Eggleton PP, Kiseleva-Eggleton L (2001) Orbital evolution in binary and triple Stars, with an application to SS Lacertae. ApJ 562:1012–1030

    ADS  CrossRef  Google Scholar 

  • Enoch B, Cameron AC, Anderson DR et al (2011) WASP-25b: a 0.6 MJ planet in the Southern hemisphere. MNRAS 410:1631–1636

    ADS  Google Scholar 

  • Fabrycky D, Tremaine S (2007) Shrinking binary and planetary orbits by Kozai cycles with tidal friction. ApJ 669:1298–1315

    ADS  CrossRef  Google Scholar 

  • Fabrycky DC, Johnson ET, Goodman J (2007) Cassini states with dissipation: why obliquity tides cannot inflate hot Jupiters. ApJ 665:754–766

    ADS  CrossRef  Google Scholar 

  • Figueira P, Oshagh M, Adibekyan VZ, Santos NC (2014) Revisiting the correlation between stellar activity and planetary surface gravity. A&A 572:A51

    ADS  CrossRef  Google Scholar 

  • Fischer DA, Valenti J (2005) The planet-metallicity correlation. ApJ 622:1102–1117

    ADS  CrossRef  Google Scholar 

  • Fortney JJ, Marley MS, Barnes JW (2007) Planetary radii across five orders of magnitude in Mass and stellar insolation: application to transits. ApJ 659:1661–1672

    ADS  CrossRef  Google Scholar 

  • Fuller J (2014) Saturn ring seismology: evidence for stable stratification in the deep interior of Saturn. Icarus 242:283–296

    ADS  CrossRef  Google Scholar 

  • Ginzburg S, Sari R (2015) Hot-Jupiter inflation due to deep energy deposition. ApJ 803:111

    ADS  CrossRef  Google Scholar 

  • Gold T, Soter S (1969) Atmospheric tides and the resonant rotation of Venus. Icarus 11:356–366

    ADS  CrossRef  Google Scholar 

  • Gonzalez G (1997) The stellar metallicity-giant planet connection. MNRAS 285:403–412

    ADS  CrossRef  Google Scholar 

  • Gonzalez G (1999) Are stars with planets anomalous? MNRAS 308:447–458

    ADS  CrossRef  Google Scholar 

  • Goodman J (2009) Concerning thermal tides on hot Jupiters. ArXiv e-prints

    Google Scholar 

  • Grunblatt SK, Huber D, Gaidos EJ et al (2016) K2-97b: a (Re-?) inflated planet orbiting a red Giant Star. AJ 152:185

    ADS  CrossRef  Google Scholar 

  • Gu PG, Ogilvie GI (2009) Diurnal thermal tides in a non-synchronized hot Jupiter. MNRAS 395:422–435

    ADS  CrossRef  Google Scholar 

  • Guillot T, Showman AP (2002) Evolution of “51 Pegasus b-like” planets. A&A 385:156–165

    ADS  CrossRef  Google Scholar 

  • Guillot T, Burrows A, Hubbard WB, Lunine JI, Saumon D (1996) Giant planets at small orbital distances. ApJ 459:L35

    ADS  CrossRef  Google Scholar 

  • Guillot T, Gautier D, Hubbard WB (1997) NOTE: new constraints on the composition of Jupiter from Galileo measurements and interior models. Icarus 130:534–539

    ADS  CrossRef  Google Scholar 

  • Hadden S, Lithwick Y (2016) Kepler planet masses and eccentricities from TTV analysis. ArXiv e-prints

    Google Scholar 

  • Hartman JD, Bakos GÁ, Bhatti W et al (2016) HAT-P-65b and HAT-P-66b: two transiting inflated hot Jupiters and observational evidence for the reinflation of close-in Giant planets. AJ 152:182

    ADS  CrossRef  Google Scholar 

  • Hébrard G, Désert JM, Díaz RF et al (2010) Observation of the full 12-hour-long transit of the exoplanet HD 80606b. Warm-Spitzer photometry and SOPHIE spectroscopy. A&A 516:A95

    CrossRef  Google Scholar 

  • Heng K, Showman AP (2015) Atmospheric dynamics of hot exoplanets. Annu Rev Earth Planet Sci 43:509–540

    ADS  CrossRef  Google Scholar 

  • Henry GW, Marcy GW, Butler RP, Vogt SS (2000) A transiting “51 Peg-like” planet. ApJ 529:L41–L44

    ADS  CrossRef  Google Scholar 

  • Hubbard WB, Militzer B (2016) A preliminary Jupiter model. ApJ 820:80

    ADS  CrossRef  Google Scholar 

  • Hubickyj O, Bodenheimer P, Lissauer JJ (2005) Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179:415–431

    ADS  CrossRef  Google Scholar 

  • Jurić M, Tremaine S (2008) Dynamical origin of extrasolar planet eccentricity distribution. ApJ 686:603–620

    ADS  CrossRef  Google Scholar 

  • Kurokawa H, Inutsuka S (2015) On the radius anomaly of hot Jupiters: reexamination of the possibility and impact of layered convection. ApJ 815:78

    ADS  CrossRef  Google Scholar 

  • Latham DW, Stefanik RP, Mazeh T, Mayor M, Burki G (1989) The unseen companion of HD114762 – a probable brown dwarf. Nature 339:38–40

    ADS  CrossRef  Google Scholar 

  • Laughlin G, Lissauer JJ (2015) Exoplanetary geophysics – an emerging discipline. ArXiv e-prints

    CrossRef  Google Scholar 

  • Laughlin G, Crismani M, Adams FC (2011) On the anomalous radii of the transiting extrasolar planets. ApJ 729:L7

    ADS  CrossRef  Google Scholar 

  • Levrard B, Correia ACM, Chabrier G et al (2007) Tidal dissipation within hot Jupiters: a new appraisal. A&A 462:L5–L8

    ADS  CrossRef  Google Scholar 

  • Lin DNC, Bodenheimer P, Richardson DC (1996) Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380:606–607

    ADS  Google Scholar 

  • Lissauer JJ, Ragozzine D, Fabrycky DC et al (2011) Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. ApJS 197:8

    ADS  CrossRef  Google Scholar 

  • Lithwick Y, Wu Y (2012) Resonant repulsion of Kepler planet pairs. ApJ 756:L11

    ADS  CrossRef  Google Scholar 

  • Lopez ED, Fortney JJ (2016) Re-inflated warm Jupiters around red Giants. ApJ 818:4

    ADS  CrossRef  Google Scholar 

  • Lubow SH, Ida S (2010) Planet migration. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, pp 347–371. http://adsabs.harvard.edu/abs/2010exop.book..347L

  • Mardling RA (2007) Long-term tidal evolution of short-period planets with companions. MNRAS 382:1768–1790

    ADS  CrossRef  Google Scholar 

  • Marley MS (2014) Saturn ring seismology: looking beyond first order resonances. Icarus 234: 194–199

    ADS  CrossRef  Google Scholar 

  • Matsakos T, Königl A (2016) On the origin of the Sub-Jovian desert in the orbital-period-planetary-Mass plane. ApJ 820:L8

    ADS  CrossRef  Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378: 355–359

    ADS  CrossRef  Google Scholar 

  • Mazeh T, Holczer T, Faigler S (2016) Dearth of short-period Neptunian exoplanets: a desert in period-mass and period-radius planes. A&A 589:A75

    ADS  CrossRef  Google Scholar 

  • Miller N, Fortney JJ (2011) The heavy-element masses of extrasolar Giant planets, revealed. ApJ 736:L29

    ADS  CrossRef  Google Scholar 

  • Paxton B, Cantiello M, Arras P et al (2013) Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive Stars. ApJS 208:4

    ADS  CrossRef  Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the Giant planets by concurrent accretion of solids and gas. Icarus 124:62–85

    ADS  CrossRef  Google Scholar 

  • Ragozzine D, Wolf AS (2009) Probing the interiors of very hot Jupiters using transit light curves. ApJ 698:1778–1794

    ADS  CrossRef  Google Scholar 

  • Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330

    ADS  CrossRef  Google Scholar 

  • Rauscher E, Menou K (2013) Three-dimensional atmospheric circulation models of HD 189733b and HD 209458b with consistent magnetic drag and Ohmic dissipation. ApJ 764:103

    ADS  CrossRef  Google Scholar 

  • Ricker GR, Winn JN, Vanderspek R et al (2015) Transiting exoplanet survey satellite (TESS). J Astron Telescopes Instrum Syst 1(1):014003

    ADS  CrossRef  Google Scholar 

  • Rowan D, Meschiari S, Laughlin G et al (2016) The lick-carnegie exoplanet survey: HD 32963 – a new Jupiter analog orbiting a Sun-like Star. ApJ 817:104

    ADS  CrossRef  Google Scholar 

  • Santos NC, Israelian G, Mayor M (2001) The metal-rich nature of stars with planets. A&A 373:1019–1031

    ADS  CrossRef  Google Scholar 

  • Socrates A (2013) Relationship between thermal tides and radius excess. ArXiv e-prints

    Google Scholar 

  • Southworth J (2010) Homogeneous studies of transiting extrasolar planets – III. Additional planets and stellar models. MNRAS 408:1689–1713

    Google Scholar 

  • Spiegel DS, Burrows A (2013) Thermal processes governing hot-Jupiter radii. ApJ 772:76

    ADS  CrossRef  Google Scholar 

  • Sterne TE (1939) Apsidal motion in binary stars. MNRAS 99:451–462

    ADS  CrossRef  Google Scholar 

  • Stevenson DJ (1982) Interiors of the giant planets. Annu Rev Earth Planet Sci 10:257–295

    ADS  CrossRef  Google Scholar 

  • Thorngren DP, Fortney JJ, Murray-Clay RA, Lopez ED (2016) The Mass-metallicity relation for Giant planets. ApJ 831:64

    ADS  CrossRef  Google Scholar 

  • Tremblin P, Chabrier G, Mayne NJ et al (2017) Advection of potential temperature in the atmosphere of irradiated exoplanets: a robust mechanism to explain radius inflation. ApJ 841:30

    ADS  CrossRef  Google Scholar 

  • Udry S, Mayor M, Santos NC (2003) Statistical properties of exoplanets. I. The period distribution: constraints for the migration scenario. A&A 407:369–376

    Google Scholar 

  • Wahl SM, Hubbard WB, Militzer B et al (2017) Comparing Jupiter interior structure models to juno gravity measurements and the role of a dilute core. Geophys Res Lett, n/a–n/a. http://doi.org/10.1002/2017GL073160, 2017GL073160

    ADS  CrossRef  Google Scholar 

  • Weiss LM, Marcy GW (2014) The Mass-radius relation for 65 exoplanets smaller than 4 Earth radii. ApJ 783:L6

    ADS  CrossRef  Google Scholar 

  • Wildt R (1938) On the state of matter in the interior of the planets. ApJ 87:508

    ADS  CrossRef  Google Scholar 

  • Winn JN, Fabrycky DC (2015) The occurrence and architecture of exoplanetary systems. ARA&A 53:409–447

    ADS  CrossRef  Google Scholar 

  • Winn JN, Holman MJ (2005) Obliquity tides on hot Jupiters. ApJ 628:L159–L162

    ADS  CrossRef  Google Scholar 

  • Wright JT, Marcy GW, Howard AW et al (2012) The frequency of hot Jupiters orbiting nearby solar-type Stars. ApJ 753:160

    ADS  CrossRef  Google Scholar 

  • Wu Y, Goldreich P (2002) Tidal evolution of the planetary system around HD 83443. ApJ 564:1024–1027

    ADS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Laughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Laughlin, G. (2018). Mass-Radius Relations of Giant Planets: The Radius Anomaly and Interior Models. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_1

Download citation