Advertisement

Formation of Giant Planets

  • Gennaro D’AngeloEmail author
  • Jack J. Lissauer
Reference work entry

Abstract

Giant planets are tens to thousands of times as massive as the Earth and many times as large. Most of their volumes are occupied by hydrogen and helium, the primary constituents of the protostellar disks from which they formed. Significantly, the solar system giants are also highly enriched in heavier elements relative to the Sun, indicating that solid material participated in their assembly. Giant planets account for most of the mass of our planetary system and of those extrasolar planetary systems in which they are present. Therefore, giant planets are primary actors in determining the orbital architectures of planetary systems and, possibly, in affecting the composition of terrestrial planets. This chapter describes the principal route that, according to current knowledge, can lead to the formation of giant planets, the core nucleated accretion model, and an alternative route, the disk instability model, which may lead to the formation of planetary-mass objects on wide orbits.

Keywords

Jupiter Jovian planets Planetary formation Planet-disk interaction Disk self-gravity 

Notes

Acknowledgments

This work benefitted greatly from discussions with Peter Bodenheimer. The authors acknowledge support from NASA’s Research Opportunities in Space and Earth Science (ROSES), and in particular from the Emerging Worlds Program. Resources supporting the work shown in Figs. 1 through 6 were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

References

  1. Adachi I, Hayashi C, Nakazawa K (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog Theor Phys 56:1756–1771ADSCrossRefGoogle Scholar
  2. Alibert Y (2017) Maximum mass of planetary embryos that formed in core-accretion models. Astron Astrophys 606:A69ADSCrossRefGoogle Scholar
  3. Alibert Y, Mordasini C, Benz W (2004) Migration and giant planet formation. Astron Astrophys 417:L25–L28ADSCrossRefGoogle Scholar
  4. Atreya et al (2018) The origin and evolution of Saturn, with exoplanet perspective. In: Saturn in the 21st century. Cambridge University Press. https://www.cambridge.org/core/books/saturn-in-the-21st-century/23F180882F694780225FEDEDF892763E
  5. Baraffe I, Chabrier G, Fortney J, Sotin C (2014) Planetary internal structures. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 763–786Google Scholar
  6. Baruteau C, Meru F, Paardekooper SJ (2011) Rapid inward migration of planets formed by gravitational instability. Mon Not R Astron Soc 416:1971–1982ADSCrossRefGoogle Scholar
  7. Bell CPM, Naylor T, Mayne NJ, Jeffries RD, Littlefair SP (2013) Pre-main-sequence isochrones – II. Revising star and planet formation time-scales. Mon Not R Astron Soc 434:806–831ADSCrossRefGoogle Scholar
  8. Benvenuto OG, Fortier A, Brunini A (2009) Forming Jupiter, Saturn, Uranus and Neptune in few million years by core accretion. Icarus 204:752–755ADSCrossRefGoogle Scholar
  9. Binney J, Tremaine S (1987) Galactic dynamics. Princeton University Press, PrincetonzbMATHGoogle Scholar
  10. Bodenheimer P, D’Angelo G, Lissauer JJ, Fortney JJ, Saumon D (2013) Deuterium burning in massive giant planets and low-mass brown dwarfs formed by core-nucleated accretion. Astrophys J 770:120ADSCrossRefGoogle Scholar
  11. Bolton SJ, Lunine J, Stevenson D et al (2017) The Juno Mission. Space Sci Rev 213:5–37ADSCrossRefGoogle Scholar
  12. Boss AP (1997) Giant planet formation by gravitational instability. Science 276:1836–1839ADSCrossRefGoogle Scholar
  13. Bowler BP (2016) Imaging extrasolar giant planets. PASP 128(10):102001ADSCrossRefGoogle Scholar
  14. Brouwers et al (2018) A&A 611. Id. A65, 12 pp. https://doi.org/10.1051/0004-6361/201731824ADSCrossRefGoogle Scholar
  15. Bryden G, Chen X, Lin DNC, Nelson RP, Papaloizou JCB (1999) Tidally induced gap formation in protostellar disks: gap clearing and suppression of protoplanetary growth. Astrophys J 514:344–367ADSCrossRefGoogle Scholar
  16. Cameron AGW, Decampli WM, Bodenheimer P (1982) Evolution of giant gaseous protoplanets embedded in the primitive solar nebula. Icarus 49:298–312ADSCrossRefGoogle Scholar
  17. Chiang E, Youdin AN (2010) Forming planetesimals in solar and extrasolar nebulae. Annu Rev Earth Planet Sci 38:493–522ADSCrossRefGoogle Scholar
  18. Coradini A, Magni G, Federico C (1981) Formation of planetesimals in an evolving protoplanetary disk. Astron Astrophys 98:173–185ADSzbMATHGoogle Scholar
  19. D’Angelo G, Bodenheimer P (2013) Three-dimensional radiation-hydrodynamics calculations of the envelopes of young planets embedded in protoplanetary disks. Astrophys J 778:77ADSCrossRefGoogle Scholar
  20. D’Angelo G, Bodenheimer P (2016) In situ and ex situ formation models of Kepler 11 planets. Astrophys J 828:33ADSCrossRefGoogle Scholar
  21. D’Angelo G, Lubow SH (2008) Evolution of migrating planets undergoing gas accretion. Astrophys J 685:560–583ADSCrossRefGoogle Scholar
  22. D’Angelo G, Podolak M (2015) Capture and evolution of planetesimals in circumjovian disks. Astrophys J 806:203ADSCrossRefGoogle Scholar
  23. D’Angelo G, Weidenschilling SJ, Lissauer JJ, Bodenheimer P (2014) Growth of Jupiter: enhancement of core accretion by a voluminous low-mass envelope. Icarus 241:298–312ADSCrossRefGoogle Scholar
  24. Dittkrist KM, Mordasini C, Klahr H, Alibert Y, Henning T (2014) Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. Astron Astrophys 567:A121CrossRefGoogle Scholar
  25. Durisen (2011) Disk hydrodynamics. In: Physical processes in circumstellar disks around young stars. University of Chicago Press. http://press.uchicago.edu/ucp/books/book/chicago/P/bo11105735.html
  26. Durisen RH, Boss AP, Mayer L et al (2007) Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 607–622Google Scholar
  27. Ehrenreich D, Désert JM (2011) Mass-loss rates for transiting exoplanets. Astron Astrophys 529:A136ADSCrossRefGoogle Scholar
  28. Ercolano B, Pascucci I (2017) The dispersal of planet-forming discs: theory confronts observations. R Soc Open Sci 4:170114MathSciNetCrossRefGoogle Scholar
  29. Forgan D, Rice K (2013) Towards a population synthesis model of objects formed by self-gravitating disc fragmentation and tidal downsizing. Mon Not R Astron Soc 432:3168–3185ADSCrossRefGoogle Scholar
  30. Forgan D, Price DJ, Bonnell I (2017) On the fragmentation boundary in magnetized self-gravitating discs. Mon Not R Astron Soc 466:3406–3416ADSCrossRefGoogle Scholar
  31. Fortney JJ, Nettelmann N (2010) The interior structure, composition, and evolution of giant planets. Space Sci Rev 152:423–447ADSCrossRefGoogle Scholar
  32. Fortney JJ, Marley MS, Barnes JW (2007) Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys J 659:1661–1672ADSCrossRefGoogle Scholar
  33. Fouchet T, Moses JI, Conrath BJ (2009) Saturn: composition and chemistry. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini–Huygens. Springer, Berlin, p 83. https://doi.org/10.1007/978-1-4020-9217-6_5CrossRefGoogle Scholar
  34. Gammie CF (2001) Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys J 553:174–183ADSCrossRefGoogle Scholar
  35. Ginzburg S, Inamdar NK, Schlichting HE (2017) Super-Earths: atmospheric accretion, thermal evolution and envelope loss. In: Pessah M, Gressel O (eds) Astrophysics and space science library, vol 445. Springer, Cham, p 295. https://doi.org/10.1007/978-3-319-60609-5_10CrossRefGoogle Scholar
  36. Goldreich P, Tremaine S (1980) Disk–satellite interactions. Astrophys J 241:425–441ADSMathSciNetCrossRefGoogle Scholar
  37. Gorti U, Liseau R, Sándor Z, Clarke C (2016) Disk dispersal: theoretical understanding and observational constraints. Space Sci Rev 205:125–152ADSCrossRefGoogle Scholar
  38. Greenzweig Y, Lissauer JJ (1992) Accretion rates of protoplanets. II – Gaussian distributions of planetesimal velocities. Icarus 100:440–463ADSCrossRefGoogle Scholar
  39. Hasegawa Y, Pudritz RE (2012) Evolutionary tracks of trapped, accreting protoplanets: the origin of the observed mass–period relation. Astrophys J 760:117ADSCrossRefGoogle Scholar
  40. Hasegawa Y, Pudritz RE (2013) Planetary populations in the mass–period diagram: a statistical treatment of exoplanet formation and the role of planet traps. Astrophys J 778:78ADSCrossRefGoogle Scholar
  41. Hellary P, Nelson RP (2012) Global models of planetary system formation in radiatively-inefficient protoplanetary discs. Mon Not R Astron Soc 419:2737–2757ADSCrossRefGoogle Scholar
  42. Helled R, Bodenheimer P, Podolak M et al (2014) Giant planet formation, evolution, and internal structure. In: Beuther H et al (eds) Protostars Planets VI. University of Arizona Press, Tucson, pp 643–665Google Scholar
  43. Hersant F, Gautier D, Tobie G, Lunine JI (2008) Interpretation of the carbon abundance in Saturn measured by Cassini. Planet Space Sci 56:1103–1111ADSCrossRefGoogle Scholar
  44. Hillenbrand LA (2008) Disk-dispersal and planet-formation timescales. Phys Scr T130(1):014024ADSCrossRefGoogle Scholar
  45. Hubbard WB, Dougherty MK, Gautier D, Jacobson R (2009) The interior of Saturn. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini–Huygens. Springer, Berlin, p 75. https://doi.org/10.1007/978-1-4020-9217-6CrossRefGoogle Scholar
  46. Hubickyj O, Bodenheimer P, Lissauer JJ (2005) Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179:415–431ADSCrossRefGoogle Scholar
  47. Ida S, Lin DNC (2004) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. Astrophys J 604:388–413ADSCrossRefGoogle Scholar
  48. Ikoma M, Nakazawa K, Emori H (2000) Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys J 537:1013–1025ADSCrossRefGoogle Scholar
  49. Jordán A, Brahm R, Bakos GÁ et al (2014) HATS-4b: a dense hot Jupiter transiting a super metal-rich G star. Astron J 148:29ADSCrossRefGoogle Scholar
  50. Kary DM, Lissauer JJ, Greenzweig Y (1993) Nebular gas drag and planetary accretion. Icarus 106:288ADSCrossRefGoogle Scholar
  51. Kippenhahn R, Weigert A, Weiss A (2013) Stellar structure and evolution, Astronomy and astrophysics library. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-30304-3. ISBN: 978-3-642-30255-8CrossRefzbMATHGoogle Scholar
  52. Kley W (1999) Mass flow and accretion through gaps in accretion discs. Mon Not R Astron Soc 303:696–710ADSCrossRefGoogle Scholar
  53. Kley W, D’Angelo G, Henning T (2001) Three-dimensional simulations of a planet embedded in a protoplanetary disk. Astrophys J 547:457–464ADSCrossRefGoogle Scholar
  54. Kratter K, Lodato G (2016) Gravitational instabilities in circumstellar disks. Annu Rev Astron Astrophys 54:271–311ADSCrossRefGoogle Scholar
  55. Kuiper GP (1951) On the origin of the solar system. Proc Natl Acad Sci 37:1–14ADSCrossRefGoogle Scholar
  56. Lambrechts M, Johansen A (2012) Rapid growth of gas-giant cores by pebble accretion. Astron Astrophys 544:A32ADSCrossRefGoogle Scholar
  57. Lambrechts M, Johansen A, Morbidelli A (2014) Separating gas-giant and ice-giant planets by halting pebble accretion. Astron Astrophys 572:A35ADSCrossRefGoogle Scholar
  58. Lin DNC, Papaloizou J (1986) On the tidal interaction between protoplanets and the protoplanetary disk. III – orbital migration of protoplanets. Astrophys J 309:846–857ADSCrossRefGoogle Scholar
  59. Lissauer JJ (1987) Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69:249–265ADSCrossRefGoogle Scholar
  60. Lissauer JJ (1993) Planet formation. Annu Rev Astron Astrophys 31:129–174ADSCrossRefGoogle Scholar
  61. Lissauer JJ, Hubickyj O, D’Angelo G, Bodenheimer P (2009) Models of Jupiter’s growth incorporating thermal and hydrodynamic constraints. Icarus 199:338–350ADSCrossRefGoogle Scholar
  62. Lubow SH, D’Angelo G (2006) Gas flow across gaps in protoplanetary disks. Astrophys J 641:526–533ADSCrossRefGoogle Scholar
  63. Lubow SH, Seibert M, Artymowicz P (1999) Disk accretion onto high-mass planets. Astrophys J 526:1001–1012ADSCrossRefGoogle Scholar
  64. Lynden-Bell D, Pringle JE (1974) The evolution of viscous discs and the origin of the nebular variables. Mon Not R Astron Soc 168:603–637ADSCrossRefGoogle Scholar
  65. Maire AL, Skemer AJ, Hinz PM et al (2015) The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system. Astron Astrophys 576:A133CrossRefGoogle Scholar
  66. Marois C, Macintosh B, Barman T et al (2008) Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348ADSCrossRefGoogle Scholar
  67. Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T (2010) Images of a fourth planet orbiting HR 8799. Nature 468:1080–1083ADSCrossRefGoogle Scholar
  68. Mihalas D, Mihalas BW (1999) Foundations of radiation hydrodynamics. Dover, New YorkzbMATHGoogle Scholar
  69. Militzer B, Hubbard WB, Vorberger J, Tamblyn I, Bonev SA (2008) A massive core in Jupiter predicted from first-principles simulations. Astrophys J 688:L45–L48ADSCrossRefGoogle Scholar
  70. Miller N, Fortney JJ (2011) The heavy-element masses of extrasolar giant planets, revealed. Astrophys J 736:L29ADSCrossRefGoogle Scholar
  71. Morbidelli A, Nesvorny D (2012) Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. Astron Astrophys 546:A18ADSCrossRefGoogle Scholar
  72. Mordasini C, Mollière P, Dittkrist KM, Jin S, Alibert Y (2015) Global models of planet formation and evolution. Int J Astrobiol 14:201–232CrossRefGoogle Scholar
  73. Movshovitz N, Bodenheimer P, Podolak M, Lissauer JJ (2010) Formation of Jupiter using opacities based on detailed grain physics. Icarus 209:616–624ADSCrossRefGoogle Scholar
  74. Murray CD, Dermott SF (1999) Solar system dynamics. Cambridge University Press, Cambridge, UKzbMATHGoogle Scholar
  75. Nettelmann N, Becker A, Holst B, Redmer R (2012) Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2). Astrophys J 750:52ADSCrossRefGoogle Scholar
  76. Ormel CW, Klahr HH (2010) The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron Astrophys 520:A43ADSCrossRefGoogle Scholar
  77. Peale S (2007) 10.14 – The origin of the natural satellites. In: Schubert G (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 465–508. https://doi.org/10.1016/B978-044452748-6.00167-X. https://www.sciencedirect.com/science/article/pii/B978044452748600167XCrossRefGoogle Scholar
  78. Piso AMA, Youdin AN, Murray-Clay RA (2015) Minimum core masses for giant planet formation with realistic equations of state and opacities. Astrophys J 800:82ADSCrossRefGoogle Scholar
  79. Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85ADSCrossRefGoogle Scholar
  80. Pringle JE (1981) Accretion discs in astrophysics. Annu Rev Astron Astrophys 19:137–162ADSCrossRefGoogle Scholar
  81. Rafikov RR (2005) Can giant planets form by direct gravitational instability? Astrophys J 621:L69–L72ADSCrossRefGoogle Scholar
  82. Rice WKM, Armitage PJ, Bate MR, Bonnell IA (2003) The effect of cooling on the global stability of self-gravitating protoplanetary discs. Mon Not R Astron Soc 339:1025–1030ADSCrossRefGoogle Scholar
  83. Roberge A, Kamp I (2010) Protoplanetary and Debris Disks. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, p 526. ISBN: 978-0-8165-2945-2, pp 269–295Google Scholar
  84. Rogers PD, Wadsley J (2011) The importance of photosphere cooling in simulations of gravitational instability in the inner regions of protostellar discs. Mon Not R Astron Soc 414:913–929ADSCrossRefGoogle Scholar
  85. Safronov VS (1960) On the gravitational instability in flattened systems with axial symmetry and non-uniform rotation. Annales d’Astrophysique 23:979ADSGoogle Scholar
  86. Salz M, Czesla S, Schneider PC, Schmitt JHMM (2016) Simulating the escaping atmospheres of hot gas planets in the solar neighborhood. Astron Astrophys 586:A75ADSCrossRefGoogle Scholar
  87. Santos NC, Adibekyan V, Figueira P et al (2017) Observational evidence for two distinct giant planet populations. Astron Astrophys 603:A30CrossRefGoogle Scholar
  88. Sato B, Fischer DA, Henry GW et al (2005) The N2K consortium. II. A transiting hot Saturn around HD 149026 with a large dense core. Astrophys J 633:465–473ADSCrossRefGoogle Scholar
  89. Saumon D, Guillot T (2004) Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys J 609:1170–1180ADSCrossRefGoogle Scholar
  90. Seager S, Kuchner M, Hier-Majumder CA, Militzer B (2007) Mass–radius relationships for solid exoplanets. Astrophys J 669:1279–1297ADSCrossRefGoogle Scholar
  91. Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355ADSGoogle Scholar
  92. Stamatellos D (2015) The migration of gas giant planets in gravitationally unstable disks. Astrophys J 810:L11ADSCrossRefGoogle Scholar
  93. Stevenson DJ (1982) Formation of the giant planets. Planet Space Sci 30:755–764ADSCrossRefGoogle Scholar
  94. Toomre A (1964) On the gravitational stability of a disk of stars. Astrophys J 139:1217–1238ADSCrossRefGoogle Scholar
  95. Wahl SM, Hubbard WB, Militzer B et al (2017) Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys Res Lett 44:4649–4659ADSCrossRefGoogle Scholar
  96. Walmswell J, Clarke C, Cossins P (2013) The evolution of planetesimal swarms in self-gravitating protoplanetary discs. Mon Not R Astron Soc 431:1903–1913ADSCrossRefGoogle Scholar
  97. Weidenschilling SJ, Davis DR (1985) Orbital resonances in the solar nebula – implications for planetary accretion. Icarus 62:16–29ADSCrossRefGoogle Scholar
  98. Weiss A, Hillebrandt W, Thomas HC, Ritter H (2006) Cox and Giuli’s principles of stellar structure. Cambridge Scientific Publishers Ltd, Cambridge, UKGoogle Scholar
  99. Wetherill GW, Stewart GR (1989) Accumulation of a swarm of small planetesimals. Icarus 77:330–357ADSCrossRefGoogle Scholar
  100. Wong MH, Mahaffy PR, Atreya SK, Niemann HB, Owen TC (2004) Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171:153–170ADSCrossRefGoogle Scholar
  101. Wuchterl G (1993) The critical mass for protoplanets revisited – massive envelopes through convection. Icarus 106:323–334ADSCrossRefGoogle Scholar
  102. Young MD, Clarke CJ (2015) Dependence of fragmentation in self-gravitating accretion discs on small-scale structure. Mon Not R Astron Soc 451:3987–3994ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Theoretical Division, Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Space Science and Astrobiology DivisionNASA Ames Research CenterMoffett FieldUSA

Section editors and affiliations

  • Ralph Pudritz
    • 1
  1. 1.Origins InstituteMcMaster UniversityHamiltonCanada

Personalised recommendations