Engineering Cell and Organ Cultures from Medicinal and Aromatic Plants Toward Commercial Production of Bioactive Metabolites

  • Krasimir RusanovEmail author
  • Atanas Atanassov
  • Ivan Atanassov
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Production of secondary metabolites from in vitro cell and hairy root cultures (CHRC) of medicinal and aromatic plants (MAP) is considered a promising alternative to gathering plant material from MAP natural populations, often a reason for their overexploitation and even extinction. However, most of the valuable secondary metabolites extracted from different MAP species are present in very low amounts in the respective CHRC. Plant metabolic engineering offers an attractive opportunity to increase the content of target secondary metabolites in engineered transgenic CHRC for production at feasible levels. Moreover, applying metabolic engineering makes it possible to redirect target metabolic pathway(s) in the transgenic CHRC to produce new compounds not present in the wild plant itself. This chapter describes the strategies and experimental toolbox for plant metabolic engineering with examples from engineering secondary metabolite production in CHRC from MAP, as well as a review of these century reported studies on metabolic engineering of CHRC. The directions and prospects for CHRC metabolic engineering applications in production of valuable secondary metabolites are discussed


Medicinal and aromatic plants Metabolic engineering Secondary metabolite production Transgenic cell suspension Transgenic hairy root cultures Biosynthetic pathway 



Cell and hairy root culture


Cell suspension


Hairy roots


Medicinal and aromatic plants


Metabolic engineering


RNA interference


Transcription factor


Monoterpenoid indole alkaloids


  1. 1.
    Hendrawati O, Woerdenbag HJ, Hille J, Kayser O (2012) Metabolic engineering of medicinal plants and microorganisms for the production of natural products. In: Kayser O, Warzecha H (eds) Pharmaceutical biotechnology: drug discovery and clinical applications, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  2. 2.
    Joshi Nirali B, Shankar MB (2015) Global market analysis of herbal drug formulations. Int J Ayu Pharm Chem 4:59Google Scholar
  3. 3.
    Global Industry Analysts I (2015) Herbal supplements and remedies – a global strategic business report. MCP-1081. Accessed Sept 09 2015
  4. 4.
    Häkkinen ST, Ritala A, Rischer H, Oksman-Caldentey K-M (2013) Sustainable food production. Springer, Berlin/Heidelber, pp 1182–1200CrossRefGoogle Scholar
  5. 5.
    Rischer H, Hakkinen ST, Ritala A, Seppanen-Laakso T, Miralpeix B, Capell T, Christou P, Oksman-Caldentey K-M (2013) Plant cells as pharmaceutical factories. Curr Pharm Des 19:5640–5660PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chen S-L, Yu H, Luo H-M, Wu Q, Li C-F, Steinmetz A (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11:37PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hamilton AC (2004) Medicinal plants, conservation and livelihoods. Biodivers Conserv 13:1477–1517CrossRefGoogle Scholar
  8. 8.
    Alvarez MA (2014) Plant biotechnology for health: from secondary metabolites to molecular farming. Springer International Publishing, Cham, pp. 33–59CrossRefGoogle Scholar
  9. 9.
    El Meskaoui A (2013) Plant cell tissue and organ culture biotechnology and its application in medicinal and aromatic plants. Med Aromat Plants 2:e147Google Scholar
  10. 10.
    Chandra S, Lata H, Varma A (2014) Biotechnology for medicinal plants. Springer, Berlin/HeidelberGoogle Scholar
  11. 11.
    Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ludwig-Muller J, Jahn L, Lippert A, Puschel J, Walter A (2014) Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications. Biotechnol Adv 32:1168–1179PubMedCrossRefGoogle Scholar
  13. 13.
    Mehrotra S, Srivastava V, Ur Rahman L, Kukreja AK (2015) Hairy root biotechnology–indicative timeline to understand missing links and future outlook. Protoplasma 252:1189–1201PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jawahar G, Madhavi D, Amrutha RN, Jogeswar G, Sunitha MSL, Rao S, Kishor PBK (2014) Current approaches for enhancing secondary plant production in vitro. Ann Phytomed 3:26–34Google Scholar
  15. 15.
    Murthy HN, Lee E-J, Paek K-Y (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16CrossRefGoogle Scholar
  16. 16.
    Paek K-Y, Hosakatte NM, Zhong J-J (2014) Production of biomass and bioactive compounds using bioreactor technology. Springer, HeidelbergGoogle Scholar
  17. 17.
    Giri CC, Zaheer M (2016) Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell Tissue Organ Cult 126:1–18CrossRefGoogle Scholar
  18. 18.
    Verpoorte RA (2000) Metabolic engineering of plant secondary metabolism. Springer, DordrechtCrossRefGoogle Scholar
  19. 19.
    Ludwig-Müller J (2014) Production of biomass and bioactive compounds using bioreactor technology. Springer, Heidelberg, pp 509–536Google Scholar
  20. 20.
    Zárate R, el Jaber-Vazdekis N, Verpoorte R (2013) Biotechnology for medicinal plants. Springer, Heidelberg, pp 359–393Google Scholar
  21. 21.
    Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol J 8:655–677PubMedCrossRefGoogle Scholar
  22. 22.
    Hebert CG, Valdes JJ, Bentley WE (2008) Beyond silencing—engineering applications of RNA interference and antisense technology for altering cellular phenotype. Curr Opin Biotechnol 19:500–505PubMedCrossRefGoogle Scholar
  23. 23.
    Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629PubMedCrossRefGoogle Scholar
  24. 24.
    Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway vectors. Plant Physiol 145:1144–1154PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11:559–565PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang S, Li H, Liang X, Yan Y, Xia P, Jia Y, Liang Z (2015) Enhanced production of phenolic acids in Salvia miltiorrhiza hairy root cultures by combing the RNAi-mediated silencing of chalcone synthase gene with salicylic acid treatment. Biochem Eng J 103:185–192CrossRefGoogle Scholar
  27. 27.
    Li F-L, Ma X-J, Hu X-L, Hoffman A, Dai J-G, Qiu D-Y (2011) Antisense-induced suppression of taxoid 14β-hydroxylase gene expression in transgenic Taxus× media cells. Afr J Biotechnol 10:8720–8728Google Scholar
  28. 28.
    Rizvi NF, Weaver JD, Cram EJ, Lee-Parsons CW (2016) Silencing the transcriptional repressor, ZCT1, illustrates the tight regulation of terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy roots. PLoS One 11:e0159712PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Fang R, Zou A, Zhao H, Wu F, Zhu Y, Zhao H, Liao Y, Tang R-J, Pang Y, Yang R (2016) Transgenic studies reveal the positive role of LeEIL-1 in regulating shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. BMC Plant Biol 16:1CrossRefGoogle Scholar
  30. 30.
    DeBoer KD, Dalton HL, Edward FJ, Hamill JD (2011) RNAi-mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L. Phytochemistry 72:344–355PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    DeBoer KD, Dalton HL, Edward FJ, Ryan SM, Hamill JD (2013) RNAi-mediated down-regulation of ornithine decarboxylase (ODC) impedes wound-stress stimulation of anabasine synthesis in Nicotiana glauca. Phytochemistry 86:21–28PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    DeBoer KD, Lye JC, Aitken CD, Su AK-K, Hamill JD (2009) The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis. Plant Mol Biol 69:299–312PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cheng Q, Su P, Hu Y, He Y, Gao W, Huang L (2014) RNA interference-mediated repression of SmCPS (copalyldiphosphate synthase) expression in hairy roots of Salvia miltiorrhiza causes a decrease of tanshinones and sheds light on the functional role of SmCPS. Biotechnol Lett 36:363–369PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    S-t L, C-h F, Zhang M, Zhang Y, Xie S, Yu L-j (2012) Enhancing taxol biosynthesis by overexpressing a 9-cis-epoxycarotenoid dioxygenase gene in transgenic cell lines of Taxus chinensis. Plant Mol Biol Report 30:1125–1130CrossRefGoogle Scholar
  35. 35.
    Zhang P, Li S-T, Liu T-T, Fu C-H, Zhou P-P, Zhao C-F, Yu L-J (2011) Overexpression of a 10-deacetylbaccatin III-10 β-O-acetyltransferase gene leads to increased taxol yield in cells of Taxus chinensis. Plant Cell Tissue Organ Cult 106:63–70CrossRefGoogle Scholar
  36. 36.
    Rahnama H, Razi Z, Dadgar MN, Hasanloo T (2013) Enhanced production of flavonolignans in hairy root cultures of Silybum marianum by over-expression of chalcone synthase gene. J Plant Biochem Biotechnol 22:138–143CrossRefGoogle Scholar
  37. 37.
    Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y, Taura F (2004) The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of δ1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J Biol Chem 279:39767–39774PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Häkkinen ST, Moyano E, Cusidó RM, Palazón J, Piñol MT, Oksman-Caldentey K-M (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6β-hydroxylase. J Exp Bot 56:2611–2618PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Moyano E, Palazón J, Bonfill M, Osuna L, Cusidó RM, Oksman-Caldentey K-M, Piñol MT (2007) Biotransformation of hyoscyamine into scopolamine in transgenic tobacco cell cultures. J Plant Physiol 164:521–524CrossRefPubMedGoogle Scholar
  40. 40.
    Ho C, Chang S, Lung J, Tsai C, Chen K (2005) The strategies to increase Taxol production by using Taxus mairei cells transformed with TS and DBAT genes. Int J Appl Sci Eng 3:179–185Google Scholar
  41. 41.
    Peebles CA, Hughes EH, Shanks JV, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11:76–86CrossRefPubMedGoogle Scholar
  42. 42.
    Sun J, Manmathan H, Sun C, Peebles CA (2016) Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq. BMC Plant Biol 16:108PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhang HC, Liu JM, Lu HY, Gao SL (2009) Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep 28:1205–1213CrossRefPubMedGoogle Scholar
  44. 44.
    Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185CrossRefPubMedGoogle Scholar
  45. 45.
    Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182CrossRefPubMedGoogle Scholar
  46. 46.
    Han J-Y, Wang H-Y, Choi Y-E (2014) Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Rep 33:225–233CrossRefPubMedGoogle Scholar
  47. 47.
    Sato F, Hashimoto T, Hachiya A, K-i T, Choi K-B, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci 98:367–372CrossRefGoogle Scholar
  48. 48.
    Bock R (2013) Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol Biol 83:21–31CrossRefPubMedGoogle Scholar
  49. 49.
    Farré G, Blancquaert D, Capell T, Van Der Straeten D, Christou P, Zhu C (2014) Engineering complex metabolic pathways in plants. Annu Rev Plant Biol 65:187–223CrossRefPubMedGoogle Scholar
  50. 50.
    Sun J, Peebles CA (2016) Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. Protoplasma 253:1255–1264PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Runguphan W, Qu X, O'Connor SE (2010) Integrating carbon-halogen bond formation into medicinal plant metabolism. Nature 468:461–464PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ferrer A, Arró M, Manzano D, Altabella T (2016) Advanced technologies for protein complex production and characterization. Springer, Heidelberg, pp 263–285CrossRefGoogle Scholar
  53. 53.
    Patron NJ (2014) DNA assembly for plant biology: techniques and tools. Curr Opin Plant Biol 19:14–19PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI (2013) The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biol 13:155PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI (2015) CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes. Front Plant Sci 6:818PubMedPubMedCentralGoogle Scholar
  56. 56.
    Sears MT, Zhang H, Rushton PJ, Wu M, Han S, Spano AJ, Timko MP (2014) NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco. Plant Mol Biol 84:49–66CrossRefPubMedGoogle Scholar
  57. 57.
    Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157:2081–2093PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297CrossRefPubMedGoogle Scholar
  59. 59.
    Tuan PA, Kwon DY, Lee S, Arasu MV, Al-Dhabi NA, Park NI, Park SU (2014) Enhancement of chlorogenic acid production in hairy roots of Platycodon grandiflorum by over-expression of an Arabidopsis thaliana transcription factor AtPAP1. Int J Mol Sci 15:14743–14752PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zhao S, Zhang J, Tan R, Yang L, Zheng X (2015) Enhancing diterpenoid concentration in Salvia miltiorrhiza hairy roots through pathway engineering with maize C1 transcription factor. J Exp Bot 66:7211–7226PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Afrin S, Huang J-J, Luo Z-Y (2015) JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci Bull 60:1062–1072CrossRefGoogle Scholar
  62. 62.
    Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta (BBA)-Gene Regul Mechan 1829:1236–1247CrossRefGoogle Scholar
  63. 63.
    Zhou M, Memelink J (2016) Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 34:441–449PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Park NI, Park JH, Park SU (2012) Overexpression of cinnamate 4-hydroxylase gene enhances biosynthesis of decursinol angelate in Angelica gigas hairy roots. Mol Biotechnol 50:114–120PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kai G, Yang S, Luo X, Zhou W, Fu X, Zhang A, Zhang Y, Xiao J (2011) Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. BMC Biotechnol 11:43PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kai G, Zhang A, Guo Y, Li L, Cui L, Luo X, Liu C, Xiao J (2012) Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6beta-hydroxylase. Mol BioSyst 8:2883–2890PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rothe G, Hachiya A, Yamada Y, Hashimoto T, Drager B (2003) Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase. J Exp Bot 54:2065–2070PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Richter U, Rothe G, Fabian AK, Rahfeld B, Drager B (2005) Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J Exp Bot 56:645–652PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zárate R, Ne J-V, Medina B, Ravelo ÁG (2006) Tailoring tropane alkaloid accumulation in transgenic hairy roots of Atropa baetica by over-expressing the gene encoding hyoscyamine 6β-hydroxylase. Biotechnol Lett 28:1271–1277PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yang C, Chen M, Zeng L, Zhang L, Liu X, Lan X, Tang K, Liao Z (2011) Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by overexpressing pmt and h6h genes. Plant Omics 4:29–33Google Scholar
  71. 71.
    Ayora-Talavera T, Chappell J, Lozoya-Gloria E, Loyola-Vargas VM (2002) Overexpression in Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl Biochem Biotechnol 97:135–145PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86:718–727PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI (2006) Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J Biotechnol 122:28–38PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Peebles CA, Sander GW, Li M, Shanks JV, San KY (2009) Five year maintenance of the inducible expression of anthranilate synthase in Catharanthus roseus hairy roots. Biotechnol Bioeng 102:1521–1525PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922–1931PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Xu M, Dong J (2007) Enhancing terpenoid indole alkaloid production by inducible expression of mammalian Bax in Catharanthus roseus cells. Sci China C Life Sci 50:234–241PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Peebles CA, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2011) The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jaggi M, Kumar S, Sinha AK (2011) Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl Microbiol Biotechnol 90:1005–1016PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Chang K, Qiu F, Chen M, Zeng L, Liu X, Yang C, Lan X, Wang Q, Liao Z (2014) Engineering the MEP pathway enhanced ajmalicine biosynthesis. Biotechnol Appl Biochem 61:249–255PubMedCrossRefGoogle Scholar
  81. 81.
    Kim OT, Kim SH, Ohyama K, Muranaka T, Choi YE, Lee HY, Kim MY, Hwang B (2010) Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase. Plant Cell Rep 29:403–411PubMedCrossRefGoogle Scholar
  82. 82.
    Moyano E, Jouhikainen K, Tammela P, Palazon J, Cusido RM, Pinol MT, Teeri TH, Oksman-Caldentey KM (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54:203–211CrossRefGoogle Scholar
  83. 83.
    Lu R, Kitamura Y, Yamaguchi J, Mukai M, Akiyama K, Yamamoto H, Muranaka T, Ikenaga T (2006) Exogenous plant H6H but not bacterial HCHL gene is expressed in Duboisia leichhardtii hairy roots and affects tropane alkaloid production. Enzym Microb Technol 39:1183–1189CrossRefGoogle Scholar
  84. 84.
    Moyano E, Fornale S, Palazon J, Cusido RM, Bagni N, Pinol MT (2002) Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 59:697–702CrossRefPubMedGoogle Scholar
  85. 85.
    Palazón J, Moyano E, Cusidó RM, Bonfill M, Oksman-Caldentey KM, Piñol MT (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165:1289–1295CrossRefGoogle Scholar
  86. 86.
    Lu H, Liu J, Zhang H, Gao S (2009) Culture of transgenic Glycyrrhiza uralensis hairy root with licorice squalene synthase (SQS) gene. Zhongguo Zhong Yao Za Zhi 34:1890–1893PubMedPubMedCentralGoogle Scholar
  87. 87.
    Wilhelmson A, Hakkinen ST, Kallio PT, Oksman-Caldentey KM, Nuutila AM (2006) Heterologous expression of Vitreoscilla hemoglobin (VHb) and cultivation conditions affect the alkaloid profile of Hyoscyamus muticus hairy roots. Biotechnol Prog 22:350–358PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci U S A 101:6786–6791PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhang L, Yang B, Lu B, Kai G, Wang Z, Xia Y, Ding R, Zhang H, Sun X, Chen W, Tang K (2007) Tropane alkaloids production in transgenic Hyoscyamus niger hairy root cultures over-expressing putrescine N-methyltransferase is methyl jasmonate-dependent. Planta 225:887–896PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kohle A, Sommer S, Yazaki K, Ferrer A, Boronat A, Li SM, Heide L (2002) High level expression of chorismate pyruvate-lyase (UbiC) and HMG-CoA reductase in hairy root cultures of Lithospermum erythrorhizon. Plant Cell Physiol 43:894–902PubMedCrossRefGoogle Scholar
  91. 91.
    Fang R, Wu F, Zou A, Zhu Y, Zhao H, Zhao H, Liao Y, Tang RJ, Yang T, Pang Y, Wang X, Yang R, Qi J, Lu G, Yang Y (2016) Transgenic analysis reveals LeACS-1 as a positive regulator of ethylene-induced shikonin biosynthesis in Lithospermum erythrorhizon hairy roots. Plant Mol Biol 90:345–358PubMedCrossRefGoogle Scholar
  92. 92.
    Lan X, Quan H, Xia X, Yin W, Zheng W (2016) Molecular cloning and transgenic characterization of the genes encoding chalcone synthase and chalcone isomerase from the Tibetan herbal plant Mirabilis himalaica. Biotechnol Appl Biochem 63:419–426PubMedCrossRefGoogle Scholar
  93. 93.
    Hakkinen ST, Tilleman S, Swiatek A, De Sutter V, Rischer H, Vanhoutte I, Van Onckelen H, Hilson P, Inze D, Oksman-Caldentey KM, Goossens A (2007) Functional characterisation of genes involved in pyridine alkaloid biosynthesis in tobacco. Phytochemistry 68:2773–2785PubMedCrossRefGoogle Scholar
  94. 94.
    Chintapakorn Y, Hamill JD (2007) Antisense-mediated reduction in ADC activity causes minor alterations in the alkaloid profile of cultured hairy roots and regenerated transgenic plants of Nicotiana tabacum. Phytochemistry 68:2465–2479PubMedCrossRefGoogle Scholar
  95. 95.
    Bunsupa S, Hanada K, Maruyama A, Aoyagi K, Komatsu K, Ueno H, Yamashita M, Sasaki R, Oikawa A, Saito K, Yamazaki M (2016) Molecular evolution and functional characterization of a bifunctional decarboxylase involved in lycopodium alkaloid biosynthesis. Plant Physiol 171:2432–2444PubMedPubMedCentralGoogle Scholar
  96. 96.
    Masakapalli SK, Ritala A, Dong L, van der Krol AR, Oksman-Caldentey KM, Ratcliffe RG, Sweetlove LJ (2014) Metabolic flux phenotype of tobacco hairy roots engineered for increased geraniol production. Phytochemistry 99:73–85PubMedCrossRefGoogle Scholar
  97. 97.
    Ritala A, Dong L, Imseng N, Seppanen-Laakso T, Vasilev N, van der Krol S, Rischer H, Maaheimo H, Virkki A, Brandli J, Schillberg S, Eibl R, Bouwmeester H, Oksman-Caldentey KM (2014) Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. J Biotechnol 176:20–28PubMedCrossRefGoogle Scholar
  98. 98.
    Vasilev N, Schmitz C, Dong L, Ritala A, Imseng N, Häkkinen ST, van der Krol S, Eibl R, Oksman-Caldentey K-M, Bouwmeester H, Fischer R, Schillberg S (2014) Comparison of plant-based expression platforms for the heterologous production of geraniol. Plant Cell Tissue Organ Cult 117:373–380Google Scholar
  99. 99.
    Chun JH, Adhikari PB, Park SB, Han JY, Choi YE (2015) Production of the dammarene sapogenin (protopanaxadiol) in transgenic tobacco plants and cultured cells by heterologous expression of PgDDS and CYP716A47. Plant Cell Rep 34:1551–1560PubMedCrossRefGoogle Scholar
  100. 100.
    Shim J, Lee OR, Kim Y, Lee J, Kim J, Jung D, In J, Lee B, Yang D (2010) Overexpression of PgSQS1 increases ginsenoside production and negatively affects ginseng growth rate in Panax ginseng. J Ginseng Res 34:98–103CrossRefGoogle Scholar
  101. 101.
    Han JY, In JG, Kwon YS, Choi YE (2010) Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 71:36–46PubMedCrossRefGoogle Scholar
  102. 102.
    Cha M, Shim SH, Kim SH, Kim OT, Lee SW, Kwon SY, Baek KH (2012) Production of taxadiene from cultured ginseng roots transformed with taxadiene synthase gene. BMB Rep 45:589–594PubMedCrossRefGoogle Scholar
  103. 103.
    Kim YK, Kim YB, Uddin MR, Lee S, Kim SU, Park SU (2014) Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS Synth Biol 3:773–779PubMedCrossRefGoogle Scholar
  104. 104.
    Zhang R, Zhang BL, Li GC, Xie T, Hu T, Luo ZY (2015) Enhancement of ginsenoside Rg(1) in Panax ginseng hairy root by overexpressing the alpha-L-rhamnosidase gene from Bifidobacterium breve. Biotechnol Lett 37:2091–2096PubMedCrossRefGoogle Scholar
  105. 105.
    Wang L, Zhao SJ, Liang YL, Sun Y, Cao HJ, Han Y (2014) Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis in Panax quinquefolius. Funct Integr Genomics 14:559–570PubMedCrossRefGoogle Scholar
  106. 106.
    Wang L, Zhao SJ, Cao HJ, Sun Y (2014) The isolation and characterization of dammarenediol synthase gene from Panax quinquefolius and its heterologous co-expression with cytochrome P450 gene PqD12H in yeast. Funct Integr Genomics 14:545–557PubMedCrossRefGoogle Scholar
  107. 107.
    Sharafi A, Sohi HH, Mousavi A, Azadi P, Khalifani BH, Razavi K (2013) Metabolic engineering of morphinan alkaloids by over-expression of codeinone reductase in transgenic hairy roots of Papaver bracteatum, the Iranian poppy. Biotechnol Lett 35:445–453PubMedCrossRefGoogle Scholar
  108. 108.
    Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Dehsara B, Hosseini Khalifani B (2013) Enhanced morphinan alkaloid production in hairy root cultures of Papaver bracteatum by over-expression of salutaridinol 7-o-acetyltransferase gene via Agrobacterium rhizogenes mediated transformation. World J Microbiol Biotechnol 29:2125–2131PubMedCrossRefGoogle Scholar
  109. 109.
    Kim YK, Kim JK, Kim YB, Lee S, Kim SU, Park SU (2013) Enhanced accumulation of phytosterol and triterpene in hairy root cultures of Platycodon grandiflorum by overexpression of Panax ginseng 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Agric Food Chem 61:1928–1934PubMedCrossRefGoogle Scholar
  110. 110.
    Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2013) Overexpression of a Catharanthus tryptophan decarboxylase (tdc) gene leads to enhanced terpenoid indole alkaloid (TIA) production in transgenic hairy root lines of Rauwolfia serpentina. Plant Cell Tissue Organ Cult 115:377–384CrossRefGoogle Scholar
  111. 111.
    Lan X, Chang K, Zeng L, Liu X, Qiu F, Zheng W, Quan H, Liao Z, Chen M, Huang W, Liu W, Wang Q (2013) Engineering salidroside biosynthetic pathway in hairy root cultures of Rhodiola crenulata based on metabolic characterization of tyrosine decarboxylase. PLoS One 8:e75459PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Yu HS, Ma LQ, Zhang JX, Shi GL, Hu YH, Wang YN (2011) Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. Phytochemistry 72:862–870PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Xiao Y, Zhang L, Gao S, Saechao S, Di P, Chen J, Chen W (2011) The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS One 6:e29713PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L (2011) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13:319–327PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Shi M, Luo X, Ju G, Yu X, Hao X, Huang Q, Xiao J, Cui L, Kai G (2014) Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Funct Integr Genomics 14:603–615PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ma Y, Ma XH, Meng FY, Zhan ZL, Guo J, Huang LQ (2016) RNA interference targeting CYP76AH1 in hairy roots of Salvia miltiorrhiza reveals its key role in the biosynthetic pathway of tanshinones. Biochem Biophys Res Commun 477:155–160PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Vaccaro M, Malafronte N, Alfieri M, De Tommasi N, Leone A (2014) Enhanced biosynthesis of bioactive abietane diterpenes by overexpressing AtDXS or AtDXR genes in Salvia sclarea hairy roots. Plant Cell Tissue Organ Cult 119:65–77CrossRefGoogle Scholar
  118. 118.
    Li FX, Jin ZP, Zhao DX, Cheng LQ, Fu CX, Ma F (2006) Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry 67:553–560PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Park NI, Xu H, Li X, Kim SJ, Park SU (2011) Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Funct Integr Genomics 11:491–496PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Park NI, Xu H, Li X, Kim YS, Lee MY, Park SU (2012) Overexpression of phenylalanine ammonia-lyase improves flavones production in transgenic hairy root cultures of Scutellaria baicalensis. Process Biochem 47:2575–2580CrossRefGoogle Scholar
  121. 121.
    Tyanhong Y (2013) Metabolic engineering of flavonoid biosynthesis in Scutellaria lateriflora hairy roots by ectopic expression of the AtMYB12 transcription factor. Arkansas State University, Ann ArborGoogle Scholar
  122. 122.
    Kim YS, Kim YB, Kim Y, Lee MY, Park SU (2014) Overexpression of cinnamate 4-hydroxylase and 4-coumaroyl CoA ligase prompted flavone accumulation in Scutellaria baicalensis hairy roots. Nat Prod Commun 9:803–807PubMedGoogle Scholar
  123. 123.
    Putalun W (2011) Technology of compact MAb and its application for medicinal plant breeding named as missile type molecular breeding. Curr Drug Discov Technol 8:24–31CrossRefPubMedGoogle Scholar
  124. 124.
    Exposito O, Syklowska-Baranek K, Moyano E, Onrubia M, Bonfill M, Palazon J, Cusido RM (2010) Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate. Biotechnol Prog 26:1145–1153PubMedPubMedCentralGoogle Scholar
  125. 125.
    Sykłowska-Baranek K, Pilarek M, Bonfill M, Kafel K, Pietrosiuk A (2015) Perfluorodecalin-supported system enhances taxane production in hairy root cultures of Taxus x media var. Hicksii carrying a taxadiene synthase transgene. Plant Cell Tissue Organ Cult 120:1051–1059CrossRefGoogle Scholar
  126. 126.
    Verma P, Sharma A, Khan SA, Shanker K, Mathur AK (2015) Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor. Protoplasma 252:373–381PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371–395CrossRefGoogle Scholar
  128. 128.
    Tian L (2015) In: Krull R, Bley T (eds) Filaments in bioprocesses. Springer International Publishing, Cham, pp 275–324CrossRefGoogle Scholar
  129. 129.
    Andre CM, Hausman JF, Guerriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 7:19PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15:221–250CrossRefGoogle Scholar
  131. 131.
    Zhou M-L, Hou H-L, Zhu X-M, Shao J-R, Wu Y-M, Tang Y-X (2010) Molecular regulation of terpenoid indole alkaloids pathway in the medicinal plant, Catharanthus roseus. J Med Plant Res 4:2760–2772Google Scholar
  132. 132.
    Cui L, Huang F, Zhang D, Lin Y, Liao P, Zong J, Kai G (2015) Transcriptome exploration for further understanding of the tropane alkaloids biosynthesis in Anisodus acutangulus. Mol Gen Genomics 290:1367–1377CrossRefGoogle Scholar
  133. 133.
    Dewey RE, Xie J (2013) Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 94:10–27PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Diamond A, Desgagne-Penix I (2016) Metabolic engineering for the production of plant isoquinoline alkaloids. Plant Biotechnol J 14:1319–1328PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Khanna C, Rosenberg M, Vail DM (2015) A review of paclitaxel and novel formulations including those suitable for use in dogs. J Vet Intern Med 29:1006–1012PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Badi HN, Abdoosi V, Farzin N (2015) New approach to improve taxol biosynthetic. Trakia J Sci 2:115–124CrossRefGoogle Scholar
  137. 137.
    Croteau R, Ketchum RE, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Shi M, Luo X, Ju G, Li L, Huang S, Zhang T, Wang H, Kai G (2016) Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. J Agric Food Chem 64:2523–2530PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Krasimir Rusanov
    • 1
    Email author
  • Atanas Atanassov
    • 2
  • Ivan Atanassov
    • 1
  1. 1.AgroBioInstituteSofiaBulgaria
  2. 2.Joint Genomic Center Ltd.SofiaBulgaria

Personalised recommendations