Advertisement

Taxus Cell Cultures: An Effective Biotechnological Tool to Enhance and Gain New Biosynthetic Insights into Taxane Production

  • Heriberto Vidal-Limon
  • Raúl Sanchez-Muñoz
  • Abbas Khojasteh
  • Elisabeth Moyano
  • Rosa M. Cusido
  • Javier Palazon
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Mass phytochemical production in biotechnological platforms based on plant cell and organ cultures provides an alternative to the field cultivation of plants. The system is being successfully applied to produce plant bioactive compounds scarce in nature, including taxol, a potent chemotherapeutic agent, and its analogs. Additionally, plant cell cultures are a potent tool to shed light on the biosynthesis of phytochemicals and its control. Several studies with Taxus spp. cell cultures, focused on increasing taxane production, have gained considerable molecular understanding of how these compounds are metabolized in the target cell cultures, particularly by the application of omics tools. This chapter summarizes the state of the art in the biotechnological production of taxol and related taxanes used for the semisynthesis of a new taxane generation. Special emphasis is given to the application of the latest cutting-edge technologies that reveal the molecular changes taking place in plant cells subjected to optimized conditions for taxane biosynthesis and accumulation.

Keywords

Coronatine Elicitors Methyl jasmonate Plant cell cultures Taxanes, taximin Taxus spp. Taxol 

Notes

Acknowledgments

The work in the laboratory of Plant Physiology at the University of Barcelona has been supported by grants from the Spanish Ministry of Science and Innovation (BIO2011-29856-C02-01 and BIO2014-51861-R) and the Generalitat de Catalunya (2014SGR215).

References

  1. 1.
    FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW) – managing systems at risk. Food and Agriculture Organization of the United Nations/Earthscan, Rome/LondonGoogle Scholar
  2. 2.
    Choi YE, Kim YS, Paek KY (2008) Types and designs of bioreactors for hairy root culture. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, DordrechtGoogle Scholar
  3. 3.
    Gaosheng H, Jingming J (2012) Production of useful secondary metabolites through regulation of biosynthetic pathway in cell and tissue suspension culture of medicinal plants. In: Leva A, Rinaldi LMR (eds) Recent advances in plant in vitro culture. InTech, Rijeka. doi:10.5772/53038CrossRefGoogle Scholar
  4. 4.
    Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, DortrechtGoogle Scholar
  5. 5.
    Xu J, Zhang N (2014) On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect. Pharm Bioproc 2:499–518CrossRefGoogle Scholar
  6. 6.
    Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154CrossRefGoogle Scholar
  7. 7.
    Sharma P, Sharma S, Yadau S, Srivastava A, Puroit I, Shirivastava N (2014) Plant derived biomolecules: culture vessels to bioreactors. In: Paek KY, Murthy HN, Zhong JJ (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer, DordrechtGoogle Scholar
  8. 8.
    Zhang W, Franco C, Curtin C, Conn S (2004) To stretch the boundary of secondary metabolite production in plant cell-based bioprocessing: anthocyanin as a case study. J Biomed Biotechnol 5:264–271CrossRefGoogle Scholar
  9. 9.
    Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Pedreño MA, Palazon J (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv 32:1157–1167CrossRefGoogle Scholar
  10. 10.
    Malik S, Cusido RM, Mirjalili MH, Moyano E, Palazon J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34CrossRefGoogle Scholar
  11. 11.
    Onrubia M, Cusidó RM, Ramirez K, Hernández-Vázquez L, Moyano E, Bonfill M, Palazon J (2013) Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives. Curr Med Chem 20:880–891PubMedGoogle Scholar
  12. 12.
    Guo BH, Kai GY, Hb J, Tang KX (2006) Taxol synthesis. Afr J Biotechnol 5:15–20Google Scholar
  13. 13.
    Liu JR, Choi DW, Chung HJ, Woo SS (2002) Production of useful secondary metabolites in plants: functional genomics approaches. J Plant Biol 45:1–6CrossRefGoogle Scholar
  14. 14.
    Cusidó RM, Palazon J, Navia-Osorio A, Mallol A, Bonfill M, Morales C, Piñol MT (1999) Production of Taxol and baccatina III by a selected Taxus baccata callus line and its derived cell suspension culture. Plant Sci 146:101–107CrossRefGoogle Scholar
  15. 15.
    Fett-Neto AG, DiCosmo F (1997) Taxol and taxane production by cell culture. In: Encyclopedia of molecular biology and molecular medicine, vol 6. VCH Verlagsgesllschaft mbH, WeinheimGoogle Scholar
  16. 16.
    Cusidó RM, Palazón J, Bonfill M, Navia-Osorio A, Morales C, Piñol MT (2002) Improved paclitaxel and baccatin III production in suspension cultures of Taxus × media. Biotechnol Prog 18:418–423CrossRefGoogle Scholar
  17. 17.
    Palazón J, Cusidó RM, Bonfill M, Morales C, Piñol MT (2003) Inhibition of paclitaxel and baccatin III accumulation by mevinolin and fosmidomycin in suspension cultures of Taxus baccata. J Biotechnol 10:157–163CrossRefGoogle Scholar
  18. 18.
    Osuna L, Tapia N, Cusido R, Palazon J, Bonfill M, Zamilpa A, Lopez-Upton J, Cruz-Sosa F (2015) Taxane production induced by methyl jasmonate in free and immobilized cell cultures of Mexican yew (Taxus globosa Schltdl). Acta Physiol Plant 37:199CrossRefGoogle Scholar
  19. 19.
    Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182CrossRefGoogle Scholar
  20. 20.
    Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378CrossRefGoogle Scholar
  21. 21.
    Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A 87:7713–7716CrossRefGoogle Scholar
  22. 22.
    Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132CrossRefGoogle Scholar
  23. 23.
    Onrubia M, Moyano E, Bonfill M, Cusidó RM, Goossens A, Palazón J (2013) Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. J Plant Physiol 170:211–219CrossRefGoogle Scholar
  24. 24.
    Ramirez-Estrada K, Osuna L, Moyano E, Bonfill M, Tapia N, Cusido RM, Palazon J (2015) Changes in gene transcription and taxane production in elicited cell cultures of Taxus × media and Taxus globosa. Phytochemistry 117:174–184CrossRefGoogle Scholar
  25. 25.
    Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci U S A 105:7100–7105CrossRefGoogle Scholar
  26. 26.
    Sabater-Jara AB, Onrubia M, Moyano E, Bonfill M, Palazón J, Pedreño MA, Cusidó RM (2014) Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus x media cell cultures. Plant Biotechnol J 12:1075–1084CrossRefGoogle Scholar
  27. 27.
    Onrubia M, Pollier J, Vanden Bossche R, Goethals M, Gevaert K, Moyano E, Vidal-Limon H, Cusido RM, Palazon J, Goossens A (2014) Taximin, a conserved plant-specific peptide is involved in the modulation of plant-specialized metabolism. Plant Biotechnol J 12:971–983CrossRefGoogle Scholar
  28. 28.
    Croteau R, Ketchum R, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97CrossRefGoogle Scholar
  29. 29.
    Vongpaseuth K, Roberts SC (2007) Advancements in the understanding of paclitaxel metabolism in tissue culture. Curr Pharm Biotechnol 8:219–236CrossRefGoogle Scholar
  30. 30.
    Ramírez-Estrada K, Altabella T, Onrubia M, Moyano E, Notredame C, Osuna L, Vanden- Bossche R, Goossens A, Cusido RM, Palazon J (2016) Transcript profiling of jasmonate-elicited Taxus cells reveals a β-phenylalanine-CoA ligase. Plant Biotechnol J 14:85–96CrossRefGoogle Scholar
  31. 31.
    Zárate R. (2010) Plant secondary metabolism engineering: methods, strategies, advances, and omics. In: Fett-Neto AG (ed) Plant secondary metabolism engineering. Methods and applications. Methods in molecular biology, vol 643. Springer, Dordrecht, pp 629–668CrossRefGoogle Scholar
  32. 32.
    Expósito O, Syklowska-Baranek K, Moyano E, Onrubia M, Bonfill M, Palazón J, Cusidó RM (2010) Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate. Biotechnol Prog 26:1145–1153PubMedGoogle Scholar
  33. 33.
    Pauwels L, Inzé D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14:87–91CrossRefGoogle Scholar
  34. 34.
    Li ST, Zhang P, Zhang M, Fu CH, Zhao CF, Dong YS, Guo AY, Yu LJ (2012) Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate. BMC Genomics 13:295CrossRefGoogle Scholar
  35. 35.
    Li ST, Fu CH, Zhang M, Zhang Y, Xie S, Yu LJ (2012) Enhancing taxol biosynthesis by overexpressing a 9-cis-epoxycarotenoid dioxygenase gene in transgenic cell lines of Taxus chinensis. Plant Mol Biol Report 30:1125–1130CrossRefGoogle Scholar
  36. 36.
    Qiu D, Pan X, Wilson IW, Li F, Liu M, Teng W, Zhang B (2009) High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene 436:37–44CrossRefGoogle Scholar
  37. 37.
    Jennewein S, Wildung MR, Chau M, Walker K, Croteau R (2004) Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci U S A 101:9149–9154CrossRefGoogle Scholar
  38. 38.
    Lenka SK, Boutaoui N, Paulose B, Vongpaseuth K, Normanly J, Roberts SC, Walker EL (2012) Identification and expression analysis of methyl jasmonate responsive ESTs in paclitaxel producing Taxus cuspidata suspension culture cells. BMC Genomics 13:148CrossRefGoogle Scholar
  39. 39.
    Sun G, Yang Y, Xie F, Wen JF, Wu J, Wilson IW, Tang Q, Liu H, Qiu D (2013) Deep sequencing reveals transcriptome re-programming of Taxus × media cells to the elicitation with methyl jasmonate. PLoS One 8:e62865CrossRefGoogle Scholar
  40. 40.
    Held M, Boulaflous A, Brandizzi F (2008) Advances in fluorescent protein-based imaging for the analysis of plant endomembranes. Plant Physiol 147:1469–1481CrossRefGoogle Scholar
  41. 41.
    Wu YX, Masison DC, Eisenberg E, Greene LE (2006) Application of photobleaching for measuring diffusion of prion proteins in cytosol of yeast cells. Methods 39:43–49CrossRefGoogle Scholar
  42. 42.
    Colling J, Takayuki T, De Clercq R, Brunoud G, Vernoux T, Fernie AR, Makunga NP, Goossens A, Pauwels L (2015) Overexpression of the Arabidopsis thaliana signalling peptide TAXIMIN1 affects lateral organ development. J Exp Bot 66:5337–5349CrossRefGoogle Scholar
  43. 43.
    Colling J, Pollier J, Bossche RV, Makunga NP, Pauwels L, Goossens A (2016) Hypersensitivity of Arabidopsis TAXIMIN1 overexpression lines to light stress is correlated with decreased sinapoyl malate abundance and countered by the antibiotic cefotaxime. Plant Signal Behav 11. doi:10.1080/15592324.2016.1143998CrossRefGoogle Scholar
  44. 44.
    Hu Y, Gai Y, Yin L, Wang X, Feng C, Feng L, Li D, Jiang XN, Wang DC (2010) Crystal structures of a Populus tomentosa 4-coumarate: CoA ligase shed light on its enzymatic mechanisms. Plant Cell 22:3093–3104CrossRefGoogle Scholar
  45. 45.
    Palazón J, Cusidó RM, Bonfill M, Morales C, Piñol MT (2003) Inhibition of paclitaxel and baccatin III accumulation by mevinolin and fosmidomycin in suspension cultures of Taxus baccata. J Biotechnol 101:157–163CrossRefGoogle Scholar
  46. 46.
    Davis EM, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top Curr Chem 209:53–95CrossRefGoogle Scholar
  47. 47.
    Martínez-Márquez A, Morante-Carriel J, Ramírez-Estrada K, Cusido R, Sellés-Marchart S, Palazon J, Pedreño MA, Bru-Martínez R (2015) A reliable protocol for the stable transformation of non-embryogenic cells cultures of grapevine (Vitis vinifera L.) and Taxus x media. J Biol Meth 2:e21. doi:10.14440/jbm.2015.51CrossRefGoogle Scholar
  48. 48.
    Han KH, Fleming P, Walker K, Loper M, Chilton WS, Mocek U, Gordon MP, Floss HG (1994) Genetic transformation of mature Taxus: an approach to genetically control the in vitro production of the anticancer drug, taxol. Plant Sci 95:187–196CrossRefGoogle Scholar
  49. 49.
    Luan EC, Allen SE, Bolyard MG (1996) Transient GUS expression in zygotic embryos of Taxus brevifolia. In vitro Cel Dev Biol-Plant 32:81–85CrossRefGoogle Scholar
  50. 50.
    Furmanowa M, Syklowska-Baranek K (2000) Hairy root cultures of Taxus x media var. Hicksii Rehd. as a new source of paclitaxel and 10-deacetylbaccatin III. Biotechnol Lett 22:683–686CrossRefGoogle Scholar
  51. 51.
    Syklowska-Baranek K, Pietrosiuk A, Kokoszka A, Furmanowa M (2009) Enhancement of taxane production in hairy root culture of Taxus x media var. Hicksii. J Plant Physiol 166:1950–1954CrossRefGoogle Scholar
  52. 52.
    Kim JA, Baek KH, Son YM, Son SH, Shin H (2009) Hairy root cultures of Taxus cuspidata for enhanced production of paclitaxel. J Korean Soc Appl Biol Chem 52:144–150CrossRefGoogle Scholar
  53. 53.
    Ho CK, Chang SH, Lung J, Tsai CJ, Chen KP (2005) The strategies to increase taxol production by using Taxus mairei cells transformed with TS and DBAT genes. Int J Appl Sci Eng 3:179–185Google Scholar
  54. 54.
    Pavlova OA, Matveyeva TV, Lutova LA (2014) rol-Genes of Agrobacterium rhizogenes. Russ J Genet Appl Res 4(2):137–145CrossRefGoogle Scholar
  55. 55.
    Li FL, Ma XJ, Hu XL, Hoffman A, Dai JG, Qiu DY (2011) Antisense-induced suppression of taxoid 14β-hydroxylase gene expression in transgenic Taxus x media cells. Afr J Biotechnol 10:8720–8728Google Scholar
  56. 56.
    Xu M, Jin H, Dong J, Zhang M, Xu X, Zhou T (2011) Abcisic acid plays critical role in ozone-induced taxol production of Taxus chinensis suspension cell cultures. Biotechnol Prog 27:1415–1420CrossRefGoogle Scholar
  57. 57.
    Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334CrossRefGoogle Scholar
  58. 58.
    Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Heriberto Vidal-Limon
    • 1
  • Raúl Sanchez-Muñoz
    • 2
  • Abbas Khojasteh
    • 1
  • Elisabeth Moyano
    • 2
  • Rosa M. Cusido
    • 1
  • Javier Palazon
    • 1
  1. 1.Laboratori de Fisiología Vegetal, Facultat de FarmaciaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Ciencies Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations