Advertisement

History of Plant Biotechnology Development

  • Ivelin Pantchev
  • Goritsa Rakleova
  • Atanas Pavlov
  • Atanas Atanassov
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

It is difficult to write a review on the history of plant biotechnology, especially after the excellent works of Vasil (Plant Cell Rep 27(9):1423–1440, 2008) Thorpe (Mol Biotechnol 37:169–180, 2007), and Sussex (Plant Cell 20(5):1189–1198, 2008). It is even more difficult to overview the current state of this fast-developing field. Nevertheless, in this review we will make an attempt not only to make a narrative of main stages but also to show the links between plant biotechnology and latest progress in biological science.

Plant biotechnology has its roots deep in human civilization but was established just a century ago. Starting outside the science mainstream of the time period, classical plant biotechnology slowly but steadily grew into a recognized discipline. The explosive growth of biology research at the end of the twentieth century brought plant biotechnology to the fast-track line. The field grew very rapidly and currently turned into a key tool for fundamental research and practical uses. Currently plant biotechnology has been essentially grown, and new disciplines as omics technologies as genome editing have arisen which further intensify both fundamental and practical studies in biology and make a bridge with other scientific areas as informatics, nanotechnology, and so-called digital and intelligent science. As such modern biotechnology speeds up the development of the Fourth Industrial Revolution (Schwab, The fourth industrial revolution. World Economic Forum. ISBN 1944835008, 2016).

Keywords

Plant tissue culture Transgenic technologies Omics Gene editing Epigenetics Marker-assisted breeding Protoplast Plant transformation Cell factories Bioreactors 

Abbreviations

2-DE

Two-dimensional electrophoresis

Bt-toxin

Toxic protein from Bacillus thuringiensis

CGIAR

Consultative Group for International Agricultural Research

CRISPR/Cas

Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein

CYMMIT

Centro Internacional de Mejoramiento de Maíz y Trigo (International Maize and Wheat Improvement Centre)

GC-MS

Gas chromatography-mass spectrometry

GM

Genetic modification

GMO

Genetically modified organism

GWAS

Genome-wide association studies

ICGEB

International Centre for Genetic Engineering and Biotechnology

ICRISAT

International Crops Research Institute for the Semi-Arid Tropics

IPR

Intellectual property rights

IRRI

International Rice Research Institute

LC-MS

Liquid chromatography-mass spectrometry

NIRS

Near-infrared spectroscopy

NMR

Nuclear magnetic resonance

RNAi

RNA interference

SNP

Single-nucleotide polymorphism

T-DNA

Transferred DNA from Ti-plasmid (or binary vector) into plant cell

Ti-plasmid

Tumor-inducing plasmid of Agrobacterium tumefaciens

References

  1. 1.
    Thorpe TA (2007) History of plant tissue culture. Mol Biotechnol 37:169–180PubMedCrossRefGoogle Scholar
  2. 2.
    Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27(9):1423–1440PubMedCrossRefGoogle Scholar
  3. 3.
    Sussex IM (2008) The scientific roots of modern plant biotechnology. Plant Cell 20(5):1189–1198PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Altman A, Ziv M, Izhar S (eds) (1999) Plant biotechnology and in vitro biology in the 21st century. Current plant science and biotechnology in agriculture. Proceedings of the IXth International Congress of the International Association of Plant Tissue Culture and Biotechnology Jerusalem, Israel, 14–19 June 1998. Kluwer Academic Publishers. ISBN 978-94-011-4661-6Google Scholar
  5. 5.
    Neelwarne Bh (ed) (2012) Red beet biotechnology. Food and pharmaceutical applications. Springer Science and Business Media, New York. ISBN 978-1-4614-3458-0Google Scholar
  6. 6.
    Pavlov A (2009) Plant cells and algae in bioreactors. Eng Life Sci 9(3):154–155CrossRefGoogle Scholar
  7. 7.
    Steingroewer J, Bley T, Georgiev V, Ivanov I, Lenk F, Marchev A, Pavlov A (2013) Bioprocessing of differentiated plant in vitro systems. Eng Life Sci 13(1):26–38CrossRefGoogle Scholar
  8. 8.
    Pavlov A (2014) Plant cells and algae in bioreactors II. Eng Life Sci 14(6):548–549CrossRefGoogle Scholar
  9. 9.
    Hiwasa-Tanase K, Ezura H (2016) Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories. Front Plant Sci 7:539PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Schwab K (2016) The fourth industrial revolution. World Economic Forum. Switzerland. ISBN 1944835008Google Scholar
  11. 11.
    White PR (1931) Plant tissue cultures. The history and present status of the problem. Arch Exp Zellforsch 10:501–518Google Scholar
  12. 12.
    Chrispeels MJ, Sadava DE (1994) Plants, genes, and agriculture. Jones and Bartlett Publishers. One Exeter Plaza, Boston, MA 02116. ISBN-13 9780867208719Google Scholar
  13. 13.
    Tomes DT, Ellis BE, Harney PM, Kasha KJ, Peterson RL (eds) (1982) Application of plant cell and tissue culture to agriculture and industry. University of Guelph, OntarioGoogle Scholar
  14. 14.
    Baulcombe D, Crute I, Davies B, Dunwell J, Gale M, Jones J, Pretty J, Sutherland W, Toulmin C (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. The Royal Society (Great Britain), p 72. ISBN 9780854037841Google Scholar
  15. 15.
    FAO (2011) Biotechnologies for agricultural development. FAO, Rome. ISBN: 978-92-5-106906-6Google Scholar
  16. 16.
    UN Economic and Social Council (2017) The role of science, technology and innovation in ensuring food security by 2030. Report, Secretary-General, Commission on Science and Technology for Development, p 22Google Scholar
  17. 17.
    Anonymous (2013) A taste of genes: KeyGene and the green-gene revolution. KeyGene, WageningenGoogle Scholar
  18. 18.
    Schleiden MJ (1838) Beitrage zur Phytogenesis. Arch Anat Physiol Wiss Med (J Muller):137–176Google Scholar
  19. 19.
    Schwann T (1839) Mikroscopische Untersuchungen uber die Ubereinstimmung in der Struktur und dem Wachstum des Thiere und Pflanzen. W Engelmann Leipzig No 176Google Scholar
  20. 20.
    Vasil V, Hildebrandt AC (1965) Differentiation of tobacco plants from single, isolated cells in microcultures. Science 150:889–892PubMedCrossRefGoogle Scholar
  21. 21.
    Vöchting H (1892) Über Transplantation am Pflanzenkörper. Untersuchungen zur Physiologie und Pathologie. Laupp, TübingenGoogle Scholar
  22. 22.
    Rechinger C (1893) Untersuchungen uber die grenzen der Teilbarkeit in Pflanzenreich. Abhandlungen zoologisch-botanischen Gessellschaft in Wien 43:310–334Google Scholar
  23. 23.
    Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber Akad Wiss Wien Math-Naturwiss Kl Abt J 111:69–92Google Scholar
  24. 24.
    Robbins WJ (1922) Cultivation of excised root tips and stem tips under sterile conditions. Bot Gaz 73:376–390CrossRefGoogle Scholar
  25. 25.
    Kotte W (1922) Kulturversuche mit isolierten Wurzelspitzen. Beitrage Allgemeine Botanik 2:413–434Google Scholar
  26. 26.
    Went FW (1928) The growth substance and growth. Rev Trav Bot Neerl 25:1–116Google Scholar
  27. 27.
    Went FW, Thimann KV (1937) Phytohormones. Macmillan New York, New YorkGoogle Scholar
  28. 28.
    Thimann KV, Schneider CA (1939) The relative activities of different auxins. Am J Botany 26:328–333CrossRefGoogle Scholar
  29. 29.
    Darwin C, Darwin F (1881) The power of movement in plants. Appleton, New YorkGoogle Scholar
  30. 30.
    White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gautheret RJ (1934) Culture du tissus cambial. CR Hebd Seances Acad Sci 198:2195–2196Google Scholar
  32. 32.
    Tulecke W (1953) A tissue derived from the pollen of Ginkgo biloba. Science 117:599–600PubMedCrossRefGoogle Scholar
  33. 33.
    Muir WH, Hildebrandt AC, Riker AJ (1954) Plant tissue cultures produced from isolated single cells. Science 119:877–878CrossRefGoogle Scholar
  34. 34.
    Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 11:118–131PubMedGoogle Scholar
  35. 35.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  36. 36.
    Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:927–929CrossRefGoogle Scholar
  37. 37.
    Morel G (1964) Régénération des variétés virosées par la culture des méristèmes apicaux. Rev Hort 136:733–740Google Scholar
  38. 38.
    Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212:97–98CrossRefGoogle Scholar
  39. 39.
    Gleba YY, Hoffmann F (1980) “Arabidobrassica”: a novel plant obtained by protoplast fusion. Planta 149(2):112–117PubMedCrossRefGoogle Scholar
  40. 40.
    Chaleff RS (1983) Isolation of agronomically useful mutants from plant cell cultures. Science 219:676–682PubMedCrossRefGoogle Scholar
  41. 41.
    Breiman A, Rotem-Abarbanell D, Karp A, Shaskin H (1987) Heritable somaclonal variation in wild barley (Hordeum spontaneum ). Theor Appl Genet 74:104–112PubMedCrossRefGoogle Scholar
  42. 42.
    Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A 93(15):7783–7788PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Edwards MD, Stuber CW, Wendel JF (1987) Molecular marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125PubMedPubMedCentralGoogle Scholar
  44. 44.
    Sasson A (1993) Biotechnologies in developing countries: present and future, vol 1. UNESCO Publishing, ParisGoogle Scholar
  45. 45.
    Kurosawa E (1926) Experimental studies on the nature of the substance excreted by the ‘bakanae’ fungus. Trans Nat Hist Soc Formos 16:213–227Google Scholar
  46. 46.
    Chen Z, Gu H (1993) Plant biotechnology in China. Science 262(5132):377–378PubMedCrossRefGoogle Scholar
  47. 47.
    Paul S, Khanuja SP, Shasany AK, Gupta MM, Darokar MP, Saikia D, Gupta AK (2010) Enhancement of artemisinin content through four cycles of recurrent selection with relation to heritability, correlation and molecular marker in Artemisia annua L. Planta Med 76(13):1468–1472PubMedCrossRefGoogle Scholar
  48. 48.
    Shukla AK, Mall M, Rai SK, Singh S, Nair P, Parashar G, Shasany AK, Singh SC, Joshi VK, Khanuja SP (2013) A transcriptomic approach for exploring the molecular basis for dosha-balancing property-based classification of plants in Ayurveda. Mol Biol Rep 40(4):3255–3262PubMedCrossRefGoogle Scholar
  49. 49.
    Dundar M, Akbarova Y (2011) Current state of biotechnology in Turkey. Curr Opin Biotechnol 22S:S3–S6CrossRefGoogle Scholar
  50. 50.
    Butenko RG (1964) The culture of isolated tissues and the physiology of plant morphogenesis. Acad Sci USSR, Moscow. (in Russian)Google Scholar
  51. 51.
    Sarkisova MA (2014) Ahead of the time or the science of immortality. TAUS, Moscow. (in Russian)Google Scholar
  52. 52.
    Gleba YY, Sytnik KM (1984) Cellular engineering of plants. Naukova Dumka, Kiev. (in Russian)Google Scholar
  53. 53.
    Balázs E, Dudits D, Sági L (eds) (2011) Plain facts about GMOs – Hungarian white paper. Szeged, HungaryGoogle Scholar
  54. 54.
    Kikindonov T, Atanassov A (1972) Tissue and cell culture in plants, Centre for research – scientific and economical information in agriculture. Bulg Agr Acad, Sofia (in Bulgarian)Google Scholar
  55. 55.
    Atanassov A (1988) Plant biotechnology. Zemizdat. Sofia, Bulgaria (in Bulgarian)Google Scholar
  56. 56.
    Atanassov A (1993) Biotechnology in the plant – growing. Russian Academy of Sciences – Siberian division, Novosibirsk, Institute of Cytology and Genetics. (in Russian)Google Scholar
  57. 57.
    Georgiev M, Georgiev V, Weber J, Bley Th, Ilieva M, Pavlov A (2008) Agrobacterium rhizogenes-mediated genetic transformations: a powerful tool for the production of metabolites. In: Wolf T, Koch J (eds) Genetically modified plants. Nova Science Publishers, pp 99–126. ISBN:978-1-60456-696-3Google Scholar
  58. 58.
    Chen Y, Zahavi E, Barek P, Umiel N (1980) Effect of salinity stresses on tobacco 1. The growth of Nicotiana tabacum callus cultures under water, NaCl and Mannitol stress. Z Pflnzenphysiol 98:141–143CrossRefGoogle Scholar
  59. 59.
    Umiel N, Zahavin E, Chen Y (1980) Effect of salinity stresses on tobacco, 2.Short term kinetics of Na+ and K+ uptake by callus cultures grown on media containing NaCl. Pflnzenphysiol 100:363–367CrossRefGoogle Scholar
  60. 60.
    Sumaryati S, Negrutiu I, Jacobs M (1992) Characterization and regeneration of salt- and water stress mutants from protoplast culture of Nicotiana plumbaginifolia (Viviani). Theor Appl Genet 83:613–619PubMedCrossRefGoogle Scholar
  61. 61.
    Queiros F, Fidalgo F, Santos I, Salema R (2007) In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol Plant 51:728–734CrossRefGoogle Scholar
  62. 62.
    Nikam AA, Devarumath RM, Ahuja A, Babu H, Shitole MG, Suprasanna P (2015) Radiation induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.) Crop J 3:46–56CrossRefGoogle Scholar
  63. 63.
    Kishor PB, Hong Z, Miao GH, CA H, Verma DP (1995) Overexpression of D1-pyrroline-5-carboxylase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lilius G, Holmberg N, Bulow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 14:177–180Google Scholar
  65. 65.
    Hayashi H, Alia Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA choline oxidase; accumulation of glycine betaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142PubMedCrossRefGoogle Scholar
  66. 66.
    Fukushima E, Arata Y, Endo T, Sonnewald U, Sato F (2001) Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell Physiol 42:245–249PubMedCrossRefGoogle Scholar
  67. 67.
    Carlson PS (1970) Induction and isolation of auxotrophic mutants in somatic cell cultures of Nicotiana tabacum. Science 168:487PubMedCrossRefGoogle Scholar
  68. 68.
    Gengenbach BG, Green CE (1975) Selection of T-cytoplasm maize callus cultures resistant to Helminthosporium maydis race T pathotoxin. Crop Sci 15:645–649CrossRefGoogle Scholar
  69. 69.
    Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497CrossRefGoogle Scholar
  70. 70.
    Nataka K, Tanaka M (1968) Differentiation of embryoids from developing germ cells in anther culture of tobacco. Jap J Genet 43:65–71CrossRefGoogle Scholar
  71. 71.
    Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87PubMedCrossRefGoogle Scholar
  72. 72.
    Niizeki H, Oono K (1968) Induction of haploid rice plant from anther culture. Proc Jap Acad 44:554–557CrossRefGoogle Scholar
  73. 73.
    Ouyang JW, Hu H, Chuang CC, Tseng CC (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Sci Sinica 16:79–95Google Scholar
  74. 74.
    Picard E, de Buyser J (1973) Obtention de plantules haploides de Triticum aestivum L. à partir de cultures d’anthères in vitro. CR Acad Sci Paris 277:1463–1466Google Scholar
  75. 75.
    Wei ZM (1982) Pollen callus culture in Triticum aestivum. L Theor Appl Genet 63:71–73CrossRefGoogle Scholar
  76. 76.
    Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256:410–411CrossRefGoogle Scholar
  77. 77.
    Laurie DA, Bennett MD (1986) Wheat x maize hybridization. Can J Genet Cytol 28:313–316CrossRefGoogle Scholar
  78. 78.
    Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat x maize crosses. Theor Appl Genet 76(3):393–397PubMedCrossRefGoogle Scholar
  79. 79.
    Inagaki M, Tahir M (1990) Comparison of haploid production frequencies in wheat varieties crossed with Hordeum bulbosum L. and maize. Jpn J Breed 40(2):209–216CrossRefGoogle Scholar
  80. 80.
    Ribaut J-M, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239CrossRefGoogle Scholar
  81. 81.
    Cloutier S, Landry BS (1994) Molecular markers applied to plant tissue culture. In: In vitro Cell Dev Biol, vol 31P, pp 32–39Google Scholar
  82. 82.
    Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.) Nature 225(5235):874–876PubMedCrossRefGoogle Scholar
  83. 83.
    UN General Assembly (2016) United Nations Decade of Action on Nutrition (2016–2025). A/70/L.42Google Scholar
  84. 84.
    Finn S (2014) Nutrition insecurity and malnutrition in developed countries. In addressing malnutrition to improve global health. Science 346:1247Google Scholar
  85. 85.
    Gilligan DO (2012) Biofortification, agricultural technology adoption, and nutrition policy: some lessons and emerging challenges. CES Econ Stud 58:405–421CrossRefGoogle Scholar
  86. 86.
    Francis D, Finer JJ, Grotewold E (2017) Challenges and opportunities for improving food quality and nutrition through plant biotechnology. Curr Opinion Biotechnol 44:124–129CrossRefGoogle Scholar
  87. 87.
    IFPRI and CIAT pamphlet (2002) Biofortification: harnessing agricultural technology to improve the health of the poor. IFPRI Report, http://purl.umn.edu/15903
  88. 88.
    Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305PubMedCrossRefGoogle Scholar
  89. 89.
    Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74CrossRefGoogle Scholar
  90. 90.
    Gad AE, Rosenberg N, Altman A (1990) Liposome-mediated gene delivery into plant cells. Physiol Plant 79(1):177–183CrossRefGoogle Scholar
  91. 91.
    Negrutiu I, Dewulf J, Pietrzak M, Botterman J, Rietveld E (1990) Hybrid genes in the analysis of transformation conditions. II. Transient expression versus stable transformation: analysis of parameters influencing gene expression levels and transformation efficiency. Physiol Plant 79(1):197–205CrossRefGoogle Scholar
  92. 92.
    Neuhaus G, Spangenberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79(1):213–217CrossRefGoogle Scholar
  93. 93.
    Chilton MD, Farrand SK, Levin R, Nester EW (1976) RP4 promotion of transfer of a large Agrobacterium plasmid which confers virulence. Genetics 83(4):609–618PubMedPubMedCentralGoogle Scholar
  94. 94.
    Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129–131CrossRefGoogle Scholar
  95. 95.
    Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180CrossRefGoogle Scholar
  96. 96.
    de Framond AJ, Barton KA, Chilton MD (1983) Mini-Ti: a new vector strategy for plant genetic engineering. Biotechnology (NY) 5:262–269Google Scholar
  97. 97.
    Beachy RN, Chen ZL, Horsch RB, Rogers SG, Hoffmann NJ, Fraley RT (1985) Accumulation and assembly of soybean beta-conglycinin in seeds of transformed petunia plants. EMBO J 4:3047–3053PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Horsch RB, Fry J, Hoffman N (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  99. 99.
    Klein TM, Wolf BD, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73CrossRefGoogle Scholar
  100. 100.
    Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci U S A 82(17):5824–5828PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Joersbo M, Brunstedt J (1990) Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Rep 9:207–210PubMedCrossRefGoogle Scholar
  102. 102.
    Kaeppler HF, Somers DA, Rines HW (1992) Silicon carbide fiber mediated stable transformation of plant cells. Theoret Appl Genet 84:560–566Google Scholar
  103. 103.
    Crossway A, Oakes JV, Irvine JM, Ward B, Knauf VC, Shewmaker CK (1986) Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol Gen Genet 202:179–185CrossRefGoogle Scholar
  104. 104.
    Deshayes A, Herrera-Estrella L, Caboche M (1985) Liposome-mediated transformation of tobacco mesophyll protoplasts by an Escherichia coli plasmid. EMBO J 4:2731–2739PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hammond B, Kough J, Herouet-Guicheney C, Jez JM (2013) toxicological evaluation of proteins introduced into food crops. Crit Rev Toxicol 43(S2):25–42PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Koch MS, Ward JM, Levine SL, Baum JA, Vicini JL, Hammond BG (2015) The food and environmental safety of Bt crops. Front Plant Sci 6:283–305PubMedPubMedCentralGoogle Scholar
  107. 107.
    Flavell RB (2016) Greener revolutions for all. Nat Biotechnol 34(11):1106–1110PubMedCrossRefGoogle Scholar
  108. 108.
    Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78PubMedCrossRefGoogle Scholar
  109. 109.
    Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology (NY) 8(3):217–221Google Scholar
  110. 110.
    Fitchen J, Beachy RN, Hein MB (1995) Plant virus expressing hybrid coat protein with added murine epitope elicits autoantibody response. Vaccine 13(12):1051–1057PubMedCrossRefGoogle Scholar
  111. 111.
    Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805PubMedCrossRefGoogle Scholar
  112. 112.
    Ko K, Ahn MH, Song M, Choo YK, Kim HS, Ko K, Joung H (2008) Glyco-engineering of biotherapeutic proteins in plants. Mol Cells 25(4):494–503PubMedGoogle Scholar
  113. 113.
    Fox JL (2006) Turning plants into protein factories. Nat Biotechnol 24(10):1191–1193PubMedCrossRefGoogle Scholar
  114. 114.
    Scheller J, Gührs KH, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19(6):573–577PubMedCrossRefGoogle Scholar
  115. 115.
    Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A 108(9):3803–3808PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Baxter HL, Poovaiah CR, Yee KL et al (2015) Field evaluation of transgenic switchgrass plants overexpressing PvMYB4 for reduced biomass recalcitrance. Bioenergy Res 8(3):910–921CrossRefGoogle Scholar
  117. 117.
    Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15CrossRefGoogle Scholar
  118. 118.
    Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99(10):3975–3981PubMedCrossRefGoogle Scholar
  119. 119.
    Nawrath C, Poirier Y, Somerville C (1995) Plant polymers for biodegradable plastics: cellulose, starch and polyhydroxyalkanoates. Mol Breed 1:105–122CrossRefGoogle Scholar
  120. 120.
    Scheller J, Conrad U (2005) Plant-based material, protein and biodegradable plastic. Curr Opin Plant Biol 8(2):188–196PubMedCrossRefGoogle Scholar
  121. 121.
    Kourtz L, Dillon K, Daughtry S, Madison LL, Peoples O, Snell KD (2006) A novel thiolase-reductase gene fusion promotes the production of polyhydroxybutyrate in Arabidopsis. Plant Biotechnol 3:435–447CrossRefGoogle Scholar
  122. 122.
    Rusanov K, Atanassov A, Atanassov I (2016) Engineering cell and organ cultures from medicinal and aromatic plants toward commercial production of bioactive metabolites. In: Pavlov A, Bley T (eds) Bioprocessing of plant in vitro systems. Reference series in phytochemistry. Springer International Publishing AG.  https://doi.org/10.1007/978-3-319-32004-5Google Scholar
  123. 123.
    Eibl R, Eibl D (2002) Bioreactors for plant cells and tissue culture. In: Oksman-Caldentey K-M, Barz WH (eds) Plant biotechnology and transgenic plants. Marcel Dekker Inc, New York/Basel, pp 163–199. ISBN: 0-8247-0794-XGoogle Scholar
  124. 124.
    Ruffoni B, Pistely L, Bertoli A, Pisteli L (2009) Plant cell cultures: bioreactors for industrial production. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals: functional foods and safety control by biosensors. Springer US. pp 203–221. ISBN 978-1-4419-7346-7Google Scholar
  125. 125.
    Yesil-Celiktas O, Gurel A, Vardar-Sukan F (2010) Large scale cultivation of plant cell and tissue culture in bioreactors. Transworld Research Network, Kerala, pp 1–54. ISBN 978-81-7895-474-5Google Scholar
  126. 126.
    Telecke W, Nickell LG (1959) Production of large amounts of plant tissue by submerged culture. Science 130:863–864CrossRefGoogle Scholar
  127. 127.
    Telecke W, Nickell LG (1960) Methods, problems and results of growing plant cells under submerged culture. Trans NY Acad Sci 22:196–206CrossRefGoogle Scholar
  128. 128.
    Curtin ME (1983) Harvesting profitable products from plant tissue culture. Biotechnol 1:649–657Google Scholar
  129. 129.
  130. 130.
    Eibl D, Eibl R (2014) Disposable bioreactors II. Advances in biochemical engineering/biotechnology. Springer-Verlag Berlin Heidelberg. ISBN 978-3-642-45157-7Google Scholar
  131. 131.
    Georgiev V, Ivanov I, Berkob S, Ilieva M, Georgiev M, Gocheva T, Pavlov A (2012) Galanthamine production by L. aestivum shoot culture in a modified bubble column bioreactor with internal sections. Eng Life Sci 12(5):534–543CrossRefGoogle Scholar
  132. 132.
    Georgiev V, Bley T, Pavlov A (2012) Bioreactors for the cultivation of red beet hairy roots. In: Neelwarne B (ed) Red beet biotechnology. Springer Science and Business Media, New York, pp 251–281.  https://doi.org/10.1007/978-1-4614-3458-0_11Google Scholar
  133. 133.
    Pavlov A, Bley T (2006) Betalains biosynthesis by Beta vulgaris hairy root culture in a temporary immersion cultivation system. Process Biochem 41:848–852CrossRefGoogle Scholar
  134. 134.
    Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14(6):607–621CrossRefGoogle Scholar
  135. 135.
    Georgiev V, Ivanov I, Berkov S, Pavlov A (2014) Temporary immersion systems for Amaryllidaceae alkaloids biosynthesis by Pancratium maritimum L. shoot culture. J Plant Biochem Biotechnol 23(4):389–398CrossRefGoogle Scholar
  136. 136.
    Ivanov I, Georgiev V, Berkov S, Pavlov A (2012) Alkaloid patterns in Leucojum aestivum shoot culture cultivated at temporary immersion conditions. J Plant Physiol 169:206–211PubMedCrossRefGoogle Scholar
  137. 137.
    Ivanov I, Georgiev V, Georgiev M, Ilieva M, Pavlov A (2011) Galanthamine and related alkaloids production by Leucojum aestivum L. shoot culture using a temporary immersion technology. Appl Biochem Biotechnol 163:268–277PubMedCrossRefGoogle Scholar
  138. 138.
    Marchev A, Georgiev V, Ivanov I, Badjakov I, Pavlov A (2011) Two-phase temporary immersion system for Agrobacterium rhizogenes genetic transformation of sage (Salvia tomentosa Mill.) Biotechnol Lett 33:1873–1878PubMedCrossRefGoogle Scholar
  139. 139.
    Pavlov A (2009) Hairy root in vitro systems: a technological platform for plant bioactive secondary metabolites production. Habilitation thesis, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of SciencesGoogle Scholar
  140. 140.
    Holtorf H, Guitton M-C, Reski R (2002) Plant functional genomics. Naturwissenschaften 89(6):235–249PubMedCrossRefGoogle Scholar
  141. 141.
    Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Benkeblia N (2014) Omics technologies and crop improvement. CRC PressGoogle Scholar
  143. 143.
    Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  144. 144.
    Lander ES (2011) Initial impact of the sequencing of the human genome. Nature 470:187–197PubMedCrossRefGoogle Scholar
  145. 145.
    The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  146. 146.
    Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Huq MA, Akter S, Nou IS, Kim HT, Jung YJ, Kang KK (2016) Identification of functional SNPs in genes and their effects on plant phenotypes. J Plant Biotechnol 43:1–11CrossRefGoogle Scholar
  149. 149.
    Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B Biol Sci 363:557–572CrossRefGoogle Scholar
  150. 150.
    Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K, Matsuoka M (2016) Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet 48:927–934PubMedCrossRefGoogle Scholar
  151. 151.
    Hayes B, Goddard M (2010) Genome-wide association and genomic selection in animal breeding. Genome 53:876–883PubMedCrossRefGoogle Scholar
  152. 152.
    Newell MA, Jannink JL (2014) Genomic selection in plant breeding. Methods Mol Biol 1145:117–130PubMedCrossRefGoogle Scholar
  153. 153.
    Varshney RK, Ribaut J-M, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012) Can genomics boost productivity of orphan crops? Nat Biotechnol 12:1172–1176CrossRefGoogle Scholar
  154. 154.
    Frisch M, Melchinger AE (2005) Selection theory for marker-assisted backcrossing. Genetics 170:909–917PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Ben-Ari G, Lavi U (2012) Marker-assisted selection in plant breeding. In: Altman A, Hasegawa P (eds) Plant biotechnology and agriculture. Prospects for the 21st century. Academic, San DiegoGoogle Scholar
  156. 156.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T (2017) Transcriptomics technologies. PLoS Comput Biol 13:e1005457PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Aharoni A, Vorst O (2002) DNA microarrays for functional plant genomics. Plant Mol Biol 48:99–118PubMedCrossRefGoogle Scholar
  159. 159.
    Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8:321–329PubMedCrossRefGoogle Scholar
  160. 160.
    Poltronieri P (2013) From plant genomics to -omics technologies. In. Poltronieri P, Burbulis N, Fogher C (eds) From plant genomics to plant biotechnology. Woodhead Publishing, pp. 3–13, ISBN 9781907568299CrossRefGoogle Scholar
  161. 161.
    Oshlack A, Robinson MD, Young MD (2010) From RNA-seq reads to differential expression results. Genome Biol 11:220PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Wilson R, Doudna J (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Napoli C, Lemieux C, Jorgensen R (1990) Introduction of chimeric chalcone synthase gene into Petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2:279–289PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Kaur A, Kumar A, Reddy MS (2016) RNA interference (RNAi) and its role in crop improvement: a review. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. Springer, SingaporeGoogle Scholar
  165. 165.
    Saurabh S, Vidyarthi AS, Prasad D (2014) RNA interference: concept to reality in crop improvement. Planta 239:543–564PubMedCrossRefGoogle Scholar
  166. 166.
    Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015) Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci 6:208PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Nawaz-ul-Rehman MS, Mansoor S, Khan AA, Zafar Y, Briddon RW (2007) RNAi-mediated male sterility of tobacco by silencing TA29. Mol Biotechnol 36:159–165PubMedCrossRefGoogle Scholar
  168. 168.
    Sandhu AS, Abdelnoor RV, Mackenzie SA (2007) Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. PNAS 104:1766–1770PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Bischof S, Grossmann J, Gruissem W (2012) Proteomics and its application in plant biotechnology. In: Altman A, Hasegawa P (eds) Plant biotechnology and agriculture. Prospects for the 21st century. Academic, San DiegoGoogle Scholar
  170. 170.
    Eldakak M, Milad SIM, Nawar AI, Rohila JS (2013) Proteomics: a biotechnology tool for crop improvement. Front Plant Sci 4:35PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Zhou W, Eudes F, Laroche A (2006) Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6:4599–4609PubMedCrossRefGoogle Scholar
  172. 172.
    Nandy S, Mandal N, Mitra S, Basu SK (2007) Current status of biotechnological research on rice (Oryza sativa L.) J Biol Sci 13:14–26Google Scholar
  173. 173.
    Badea C, Basu SK (2010) Impact of drought on plant proteome and metabolome. In Proceedings of the UGC state level seminar (India). Section II:104–120Google Scholar
  174. 174.
    Roessner U, Dias DA (2013) Metabolomics tools for natural product discovery. Methods and protocols. Methods in Molecular Biology, vol. 1055, Humana Press,  https://doi.org/10.1007/978-1-62703-577-4Google Scholar
  175. 175.
    Beckles D, Roessner U (2012) Plant metabolomics – applications and opportunities for agricultural biotechnology. In: Altman A, Hasegawa P (eds) Plant biotechnology and agriculture. Prospects for the 21st century. Academic, San DiegoGoogle Scholar
  176. 176.
    Kopka J, Fernie AF, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5:109PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Fernandez O, Urrutia M, Bernillon S, Giauffret C, Tardieu F, Le Gouis J, Langlade N, Charcosset A, Moing A, Gibon Y (2016) Fortune telling: metabolic markers of plant performance. Metabolomics 12(10):158PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    European Plant Science Organization (EPSO) (2005) European plant science: a field of opportunities. J Exp Bot 56:1699–1709CrossRefGoogle Scholar
  179. 179.
    Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783PubMedCrossRefGoogle Scholar
  180. 180.
    Rahman H, Ramanathan V, Jagadeeshselvam N, Ramasamy S, Rajendran S, Ramachandran M, Sudheer P, Chauhan S, Natesan S, Muthurajan R (2015) Phenomics: technologies and applications in plant and agriculture. In: Barh D, Khan M, Davies E (eds) PlantOmics: the omics of plant science. Springer, New DelhiGoogle Scholar
  181. 181.
    Kumar J, Pratap A, Kumar S (2015) Phenomics in crop plants: trends, options and limitations. Springer, New DelhiGoogle Scholar
  182. 182.
    Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30(3):231–239PubMedCrossRefGoogle Scholar
  184. 184.
    Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene specific mutations. Proc Natl Acad Sci U S A 96:8774–8778PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A 102(6):2232–2237PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27PubMedCrossRefGoogle Scholar
  187. 187.
    Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693PubMedCrossRefGoogle Scholar
  190. 190.
    Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688PubMedCrossRefGoogle Scholar
  191. 191.
    Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983PubMedCrossRefGoogle Scholar
  192. 192.
    Aufsatz W, Mette MF, van der Winden J, Matzke AJ, Matzke M (2002) RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A 99(S4):16499–16506PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201PubMedCrossRefGoogle Scholar
  194. 194.
    Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Köhler C, Wolff P, Spillane C (2012) Epigenetic mechanisms underlying genomic imprinting in plants. Annu Rev Plant Biol 63:331–352PubMedCrossRefGoogle Scholar
  196. 196.
    Gohlke J, Mosher RA (2015) Exploiting mobile RNA silencing for crop improvement. Am J Bot 102:1399–1400PubMedCrossRefGoogle Scholar
  197. 197.
    Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226CrossRefGoogle Scholar
  199. 199.
    Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CLC, Voermans W, Woudenberg L, de Wit JPC, Reinink K, Schut JW, van der Zeeuw E, Vogelaar A, Freymark G, Gutteling EW, Keppel MN, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, de Jong H, Wijnke E (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837–845PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125(4):625–645PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Kowalski SP, Ebora RV, Kryder RD, Potter RH (2002) Transgenic crops, biotechnology and ownership rights: what scientists need to know. Plant J 31(4):407–421PubMedCrossRefGoogle Scholar
  202. 202.
    Blakeney M (2012) Patenting of plant varieties and plant breeding methods. J Exp Bot 63(3):1069–1074PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ivelin Pantchev
    • 1
    • 3
  • Goritsa Rakleova
    • 1
  • Atanas Pavlov
    • 2
    • 4
  • Atanas Atanassov
    • 1
  1. 1.Joint Genomic Center Ltd.SofiaBulgaria
  2. 2.University of Food TechnologiesPlovdivBulgaria
  3. 3.Department of Biochemistry, Faculty of BiologySofia UniversitySofiaBulgaria
  4. 4.The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations