Challenges for the Cultivation of Plant Cells on the Example of Hypericum perforatum and Taxus chinensis

  • Mariam Gaid
  • Thomas Wucherpfennig
  • Stephan Scholl
  • Ludger Beerhues
  • Rainer KrullEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Medicinal plants are sustainable bio-factories for valuable active pharmaceutical ingredients (API). They are commonly grown in the field and their extracts have a given combination of constituents. There is some variation due to climate fluctuations and plant diseases (microbial infections), genotypic changes, soil differences, etc. Additionally, fertile agricultural areas are increasingly limited. However, these variations are undesired because they are non-controllable and can affect the batch conformity of a drug significantly. This is a challenge for producers of phyto-pharmaceuticals, and the variations in the API composition are compensated by mixing extracts from various batches to achieve the required continuous quality of an authorized drug. These drawbacks of field cultivation are overcome by well-defined bioreactor-based cultivation. Biomass growth and API production take place under variable but controllable cultivation conditions, resulting in customized extracts. Variation of the cultivation conditions leads to qualitative and/or quantitative changes in the metabolome. During bioreactor cultivation, plant cells tend to stay connected after division, which leads to the formation of aggregates. The size of shear-sensitive plant cell aggregates influenced by hydrodynamic forces resulting from mechanical agitation was often recognized as an intangible parameter, which might be responsible for general variability in plant cell culture processes. To date, however, the bioreactor approach is not often industrially implemented. This chapter provides an overview of the challenges in the cultivation of plant cell systems, briefly illustrated by (i) research on Hypericum perforatum tissue cultures into up-to-date approaches for production of hyperforin and hypericin, possibly functional at a pre-commercial level in the future, and (ii) effects of hydrodynamic mechanical forces on Taxus chinensis submerged cultures for production of paclitaxel.


Higher plants are an abundant source of bioactive and pharmaceutically important chemicals including drugs such as morphine, codeine, reserpine, and several alkaloids and steroids [1]. The world market for herbal medicines has reached US $ 60 billion, with annual growth rates of 5–15% [2]. Over 60% of anticancer drugs and 75% of drugs for infectious diseases currently used are made or extracted from natural sources [3]. The increasing demand for tailored phyto-pharmaceuticals with innovative active pharmaceutical ingredients (APIs) and activity profiles, produced by ecologically more sustainable bio-factories, and the significant reductions in biodiversity are driving efforts to find alternative ways of producing high-value plant-derived metabolites under well-defined cultivation conditions [4].


Hypericum perforatum Hyperforin Hypericin Biodiversity In vitro cultures Taxus chinensis Plant cell aggregates Hydromechanical stress Cell viability 



The authors gratefully acknowledge financial support from the Lower Saxony Ministry for Science and Culture in the joint research project Novel synthesis and formulation methods for poorly soluble drugs and sensitive biopharmaceuticals (SynFoBiA) within the Center for Pharmaceutical Process Engineering (PVZ) at the Technische Universität Braunschweig, Germany.


  1. 1.
    Sabater-Jara A, Tudela L, López-Pérez A (2010) In vitro culture of Taxus sp.: strategies to increase cell growth and taxoid production. Phytochem Rev 9:343–356CrossRefGoogle Scholar
  2. 2.
    Kartal M (2007) Intellectual property protection in the natural product drug discovery, traditional herbal medicine and herbal medicinal products. Phytother Res 21:113–119PubMedCrossRefGoogle Scholar
  3. 3.
    Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981−2002. J Nat Prod 66:1022–1037PubMedCrossRefGoogle Scholar
  4. 4.
    Georgiev M, Pavlov A, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185CrossRefPubMedGoogle Scholar
  5. 5.
    Wucherpfennig T, Schilling J, Sieblitz D, Pump M, Schütte K, Wittmann C, Krull R (2012) Improved assessment of aggregate size in Taxus plant cell suspension cultures using laser diffraction. Eng Life Sci 12:595–602CrossRefGoogle Scholar
  6. 6.
    McDonald K, Jackman A, Hurst S (2001) Characterization of plant suspension cultures using the focused beam reflectance technique. Biotechnol Lett 23:317–324CrossRefGoogle Scholar
  7. 7.
    Georgiev M, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Haberlandt G (1969) Experiments on the culture of isolated plant cells. Bot Rev 35:68–88CrossRefGoogle Scholar
  9. 9.
    Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hall R (2000) Plant cell culture initiation. Mol Biotechnol 16:161–173PubMedCrossRefGoogle Scholar
  11. 11.
    Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25CrossRefGoogle Scholar
  12. 12.
    Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3:387–395PubMedCrossRefGoogle Scholar
  14. 14.
    Kolewe ME, Henson MA, Roberts SC (2010) Characterization of aggregate size in Taxus suspension cell culture. Plant Cell Rep 29:485–494PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kolewe ME, Henson MA, Roberts SC (2011) Analysis of aggregate size as a process variable affecting paclitaxel accumulation in Taxus suspension cultures. Biotechnol Prog:1365–1372PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hulst AC, Meyer MMT, Breteler H, Tramper J (1989) Effect of aggregate size in cell cultures of Tagetes patula on thiophene production and cell growth. Appl Microbiol Biotechnol 30:18–25CrossRefGoogle Scholar
  17. 17.
    Edahiro J, Seki M (2006) Phenylpropanoid metabolite supports cell aggregate formation in strawberry cell suspension culture. J Biosci Bioeng 102:8–13PubMedCrossRefGoogle Scholar
  18. 18.
    Jianfeng X, Zhiguo S, Pusun F (1998) Suspension culture of compact callus aggregate of Rhodiola sachalinensis for improved salidroside production. Enzym Microb Technol 23:20–27CrossRefGoogle Scholar
  19. 19.
    Madhusudhan R, Ramachandra Rao S, Ravishankar GA (1995) Osmolarity as a measure of growth of plant cells in suspension cultures. Enzym Microb Technol 17:989–991CrossRefGoogle Scholar
  20. 20.
    Zhao D, Huang Y, Jin Z, Qu W, Lu D (2003) Effect of aggregate size in cell cultures of Saussurea medusa on cell growth and jaceosidin production. Plant Cell Rep 21:1129–1133PubMedCrossRefGoogle Scholar
  21. 21.
    Bolta Ž, Baričevič D, Raspor P (2003) Biomass segregation in sage cell suspension culture. Biotechnol Lett 25(1):61–65PubMedCrossRefGoogle Scholar
  22. 22.
    Pépin M, Smith M, Reid J (1999) Application of imaging tools to plant cell culture: relationship between plant cell aggregation and flavonoid production. In Vitro Cell Dev Biol Plant 35:290–295CrossRefGoogle Scholar
  23. 23.
    Fu C, Zhao D, Huang Y, Ma F (2005) Cellular aggregate size as the critical factor for flavonoid production by suspension cultures of Saussurea medusa. Biotechnol Lett 27:91–95PubMedCrossRefGoogle Scholar
  24. 24.
    Klemow KM, Bartlow A, Crawford J, Kocher N, Shah J, Ritsick M (2011) Medical attributes of St. John’s wort (Hypericum perforatum). In: Benzie IFF, Wachtel-Galor S (eds) Herbal medicine: biomolecular and clinical aspects, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  25. 25.
    Crockett SL, Robson NK (2011) Taxonomy and chemotaxonomy of the genus Hypericum. Med Aromat Plant Sci Biotechnol 5:1–13PubMedPubMedCentralGoogle Scholar
  26. 26.
    Axarlis S, Mentis A, Demetzos C, Mitaku S, Skaltsounis AL, Marselos M, Malamas M (1998) Antiviral in vitro activity of Hypericum perforatum L. extract on the human cytomegalovirus (HCMV). Phytother Res 12:507–511CrossRefGoogle Scholar
  27. 27.
    Greeson JM, Sanford B, Monti DA (2001) St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 153:402–414PubMedCrossRefGoogle Scholar
  28. 28.
    Hofrichter J, Krohn M, Schumacher T, Lange C, Feistel B, Walbroel B, Heinze HJ, Crockett S, Sharbel TF, Pahnke J (2013) Reduced Alzheimer’s disease pathology by St. John’s Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr Alzheimer Res 10:1057–1069PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Oliveira AI, Pinho C, Sarmento B, Dias ACP (2016) Neuroprotective activity of Hypericum perforatum and its major components. Front Plant Sci 7:1–15Google Scholar
  30. 30.
    Laakmann G, Dienel A, Kieser M (1998) Clinical significance of hyperforin for the efficacy of Hypericum extracts on depressive disorders of different severities. Phytomedicine 5:435–442PubMedCrossRefGoogle Scholar
  31. 31.
    European Medicines Agency Evaluation of Medicines for Human Use (EMEA) (2009) Doc Ref EMA/HMPC/101303/2008Google Scholar
  32. 32.
    Knishinsky R (1998) The prozac alternative: natural relief from depression with St. John’s Wort, Kava, Ginkgo, 5-HTP, homeopathy, and other alternative therapies. Healing Art Press, RochesterGoogle Scholar
  33. 33.
    European Scientific Cooperative on Phytotherapy (ESCOP) (1997) Hyperici herba. Monographs on the medicinal uses of plant drugs. Exeter, UK Accessed 01 Sept 2016. Scholar
  34. 34.
    Blumenthal M, Busse WR, Goldberg A, Gruenwald J, Hall T, Riggins CW, Rister RS, Klein S, Rister RS (1998) The complete german commission E monographs – therapeutic guide to herbal medicines. American Botanical Council, Boston, Integrative Medicine Communication, Austin, pp 214–215Google Scholar
  35. 35.
    Tekel’ová D, Repcák M, Zemková E, Tóth J (2000) Quantitative changes of dianthrones, hyperforin and flavonoids content in the flower ontogenesis of Hypericum perforatum. Planta Med 66:778–780PubMedCrossRefGoogle Scholar
  36. 36.
    Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant-environment interactions: accumulation of Hypericin in dark glands of Hypericum perforatum. Ann Bot 98:793–804PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Soelberg J, Jørgensen LB, Jäger AK (2007) Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann Bot 99:1097–1100PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Blumenthal M, Goldberg A, Brinckmann J (2000) Herbal medicine: expanded commission E monographs. American Botanical Council, Newton, Integrative Medicine Communications, Austin, pp 359–366Google Scholar
  39. 39.
    Meinke MC, Richter H, Kleemann A, Lademann J, Tscherch K, Rohn S, Schempp CM (2015) Characterization of atopic skin and the effect of a hyperforin-rich cream by laser scanning microscopy. J Biomed Opt 20:051013-1-8Google Scholar
  40. 40.
    Hölscher D, Shroff R, Knop K, Gottschaldt M, Crecelius A, Schneider B, Heckel DG, Schubert US, Svatoš A (2009) Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites in Arabidopsis thaliana and Hypericum species. Plant J 60:907–918PubMedCrossRefGoogle Scholar
  41. 41.
    Barathan M, Mariappan V, Shankar EM, BJJ A, Goh KL, Vadivelu J (2013) Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases. Cell Death Dis 4:e697PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Barras A, Boussekey L, Courtade E, Boukherroub R (2013) Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro. Nanoscale 5:10562–10572PubMedCrossRefGoogle Scholar
  43. 43.
    Mannel M (2004) Drug Interactions with St John’s Wort mechanisms and clinical implications. Drug Saf 27:773–797PubMedCrossRefGoogle Scholar
  44. 44.
    Borrelli F, Izzo AA (2009) Herb-drug interactions with St John’s wort (Hypericum perforatum): an update on clinical observations. Am Assoc Pharm Sci 11:710–727Google Scholar
  45. 45.
    Schempp CM, Lüdtke R, Winghofer B, Simon JC (2000) Effect of topical application of Hypericum perforatum extract (St. John’s wort) on skin sensitivity to solar simulated radiation. Photodermatol Photoimmunol Photomed 16:125–128PubMedCrossRefGoogle Scholar
  46. 46.
    Ernst E (2003) Hypericum: the genus Hypericum. Taylor & Francis/CRC Press, LondonGoogle Scholar
  47. 47.
    Seidler-Lożykowska K (2003) Secondary metabolites content of Hypericum sp. in different stages and plant parts. In: Ernst E (ed) Hypericum: the genus Hypericum. Taylor & Francis, LondonGoogle Scholar
  48. 48.
    Odabas MS, Raduğienë J, Camas N, Janulis V, Ivanauskas L, Çırak C (2009) The quantitative effects of temperature and light intensity on hyperforin and hypericins accumulation in Hypericum perforatum L. J Med Plants Res 3:519–525Google Scholar
  49. 49.
    Radušienė J, Karpavičienė B, Stanius Ž (2012) Effect of external and internal factors on secondary metabolites accumulation in St. John’s worth. Bot Lithuanica 18:101–108CrossRefGoogle Scholar
  50. 50.
    Sirvent TM, Krasnoff SB, Gibson DM (2003) Induction of hypericins and hyperforins in Hypericum perforatum in response to damage by herbivores. J Chem Ecol 29:2667–2681PubMedCrossRefGoogle Scholar
  51. 51.
    Košuth J, Koperdáková J, Tolonen A, Hohtola A, Čellárová E (2003) The content of hypericins and phloroglucinols in Hypericum perforatum L. seedlings at early stage of development. Plant Sci 165:515–521CrossRefGoogle Scholar
  52. 52.
    Briskin DP, Gawienowski MC (2001) Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol Biochem 39:1075–1081CrossRefGoogle Scholar
  53. 53.
    Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O’Neal JM, Cornwell T, Pastor I, Fridlender B (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20:522–531PubMedCrossRefGoogle Scholar
  54. 54.
    Constantine GH, Karchesy J (1998) Note variations in hypericin concentrations in Hypericum perforatum L. and commercial products. Pharm Biol 36:365–367CrossRefGoogle Scholar
  55. 55.
    Bilia AR, Bergonzi MC, Morgenni F, Mazzi G, Vincieri FF (2001) Evaluation of chemical stability of St. John’s wort commercial extract and some preparations. Int J Pharma 213:199–208CrossRefGoogle Scholar
  56. 56.
    Bergonzi MC, Bilia AR, Gallori S, Guerrini D, Vincieri FF (2001) Variability in the content of the constituents of Hypericum perforatum L. and some commercial extracts. Drug Dev Ind Pharm 27:491–497PubMedCrossRefGoogle Scholar
  57. 57.
    Shah AK, Avery BA, Wyandt CM (2005) Content analysis and stability evaluation of selected commercial preparations of St. John’s wort. Drug Dev Ind Pharm 31:907–916PubMedCrossRefGoogle Scholar
  58. 58.
    Nahrstedt A, Butterweck V (2010) Lessons learned from herbal medicinal products: the example of St. John’s Wort. J Nat Prod 73:1015–1021PubMedCrossRefGoogle Scholar
  59. 59.
    Fuzzati N, Gabetta N, Strepponi I, Villa F (2001) High-performance liquid chromatography–electrospray ionisation mass spectrometry and multiple mass spectrometry studies of hyperforin degradation products. J Chromatogr A 926:187–198PubMedCrossRefGoogle Scholar
  60. 60.
    Verotta L, Appendino G, Belloro E, Bianchi F, Sterner O, Lovati M, Bombardelli E (2002) Synthesis and biological evaluation of hyperforin analogues. Part I. Modification of the enolized cyclohexanedione moiety. J Nat Prod 65:433–438PubMedCrossRefGoogle Scholar
  61. 61.
    Ang CY, Hu L, Heinze TM, Cui Y, Freeman JP, Kozak K, Luo W, Liu FF, Mattia A, DiNovi M (2004) Instability of St. John’s Wort (Hypericum perforatum L.) and degradation of Hyperforin in aqueous solutions and functional beverage. J Agric Food Chem 52:6156–6164PubMedCrossRefGoogle Scholar
  62. 62.
    Vajs V, Vugdelija S, Trifunovic S, Karadzić I, Juranić N, Macura S, Milosavljević S (2003) Further degradation product of hyperforin from Hypericum perforatum (St. John’s Wort). Fitoterapia 74:439–444PubMedCrossRefGoogle Scholar
  63. 63.
    Draves AH, Walker SE (2000) Determination of hypericin and pseudohypericin in pharmaceutical preparations by liquid chromatography with fluorescence detection. J Chromatogr B 749:57–66CrossRefGoogle Scholar
  64. 64.
    Wurglics M, Westerhoff K, Kaunzinger A, Wilke A, Baumeister A, Dressman J, Schubert-Zsilavecz M (2001) Batch-to-batch reproducibility of St. John’s wort preparations. Pharmacopsychiatry 34(Suppl 1):152–156CrossRefGoogle Scholar
  65. 65.
    Erdelmeier, CAJ, Klessing K, Renzl S, Hauer H (1999) New hyperforin analogues from Hypericum perforatum and a stable dicyclohexylammonium salt of hyperforin. In: Luijendijk TJC, Verpoorte R (eds.) 2000 years of natural products research – past, present and future. Thieme Verlag, StuttgartGoogle Scholar
  66. 66.
    Chatterjee SS, Erdelmeier C, Klessing K, Marme D, Schachtele C (2002) Stable hyperforin salts, method for producing same and their use in the treatment of Alzheimer’s disease. United States Patent 6, 444, 662 B1 2002Google Scholar
  67. 67.
    Gaid M, Haas P, Beuerle T, Scholl S, Beerhues L (2016) Hyperforin production in Hypericum perforatum root cultures. J Biotechnol 222:47–55PubMedCrossRefGoogle Scholar
  68. 68.
    Verotta L, Appendino G, Belloro E, Jakupovic J, Bombardelli E (1999) Furohyperforin, a prenylated phloroglucinol from St. John’s Wort (Hypericum perforatum). J Nat Prod 62:770–772PubMedCrossRefGoogle Scholar
  69. 69.
    Wolfender JL, Verotta L, Belvisi L, Fuzzati N, Hostettmann K (2003) Structural investigations of isomeric oxidised forms of hyperforin by HPLC-NMR and HPLC-MSn. Phytochem Anal 14:290–297PubMedCrossRefGoogle Scholar
  70. 70.
    Kirakosyan A, Hayashi H, Inoue K, Charchoglyan A, Vardapetyan H (2000) Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry 53:345–348PubMedCrossRefGoogle Scholar
  71. 71.
    Sirvent T, Gibson D (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–320CrossRefGoogle Scholar
  72. 72.
    Kornfeld A, Kaufman RB, CR L, Gibson DM, Bolling SF, Warber SL, Chang SC, Kirakosyan A (2007) The production of hypericins in two selected Hypericum perforatum shoot cultures is related to differences in black gland structure. Plant Physiol Biochem 45:24–32PubMedCrossRefGoogle Scholar
  73. 73.
    Tocci N, D’ Auria FD, Simonetti G, Panella S, Palamara AT, Debrassi A, Rodrigues CA, Filho VC, Sciubba F, Pasqua G (2013) Bioassay-guided fractionation of extracts from Hypericum perforatum in vitro roots treated with carboxymethylchitosans and determination of antifungal activity against human fungal pathogens. Plant Physiol Biochem 70:342–347PubMedCrossRefGoogle Scholar
  74. 74.
    Tocci N, Simonetti G, D’Auria FD, Panella S, Palamara AT, Ferrari F, Pasqua G (2013) Chemical composition and antifungal activity of Hypericum perforatum subsp angustifolium roots from wild plants and plants grown under controlled conditions. Plant Biosyst 147:557–562CrossRefGoogle Scholar
  75. 75.
    Valletta A, De Angelis G, Badiali C, Brasili E, Miccheli A, Di Cocco ME, Pasqua G (2016) Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Rep 35:1009–1020PubMedCrossRefGoogle Scholar
  76. 76.
    Wu SQ, XK Y, Lian ML, Park SY, Piao XC (2014) Several factors affecting hypericin production of Hypericum perforatum during adventitious root culture in airlift bioreactors. Acta Physiol Plant 36:975–981CrossRefGoogle Scholar
  77. 77.
    Cui XH, Murthy HN, Paek KY (2014) Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds. Appl Biochem Biotechnol 174:784–792PubMedCrossRefGoogle Scholar
  78. 78.
    Conceição LFR, Ferreres F, Tavares RM, Dias ACP (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155PubMedCrossRefGoogle Scholar
  79. 79.
    Zobayed SMA, Saxena PK (2003) In vitro-grown roots: a superior explant for prolific shoot regeneration of St. John’s wort (Hypericum perforatum L. cv ´New Stem’) in a temporary immersion bioreactor. Plant Sci 165:463–470CrossRefGoogle Scholar
  80. 80.
    Goel MK, Kukreja AK, Bisht NS (2008) In vitro manipulations in St. John’s wort (Hypericum perforatum L.) for incessant and scale up micropropagation using adventitious roots in liquid medium and assessment of clonal fidelity using RAPD analysis. Plant Cell Tiss Organ Cult 96:1–9CrossRefGoogle Scholar
  81. 81.
    Charchoglyan A, Abrahamyan A, Fujii I, Boubakir Z, Gulder TAM, Kutchan TM, Vardapetyan H, Bringmann G, Ebizuka Y, Beerhues L (2007) Differential accumulation of hyperforin and secohyperforin in Hypericum perforatum tissue cultures. Phytochemistry 68:2670–2677PubMedCrossRefGoogle Scholar
  82. 82.
    Karppinen K, Hokkanen J, Tolonen A, Mattila S, Hohtola A (2007) Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum. Phytochemistry 68:1038–1045PubMedCrossRefGoogle Scholar
  83. 83.
    Steingroewer J, Bley T, Georgiev V, Ivanov I, Lenk F, Marchev A, Pavlov (2013) Bioprocessing of differentiated plant in vitro systems. Eng Life Sci 13:26–38CrossRefGoogle Scholar
  84. 84.
    Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598CrossRefGoogle Scholar
  85. 85.
    Tocci N, Simonetti G, D’Auria FD, Panella S, Palamara AT, Valletta A, Pasqua G (2011) Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotechnol 91:977–987PubMedCrossRefGoogle Scholar
  86. 86.
    Gaid MM, Sircar D, Müller A, Beuerle T, Liu B, Ernst L, Hänsch R, Beerhues L (2012) Cinnamate:CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in Hypericum calycinum cell cultures. Plant Physiol 160:1267–1280PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Klingauf P, Beuerle T, Mellenthin A, El-Moghazya SAM, Boubakira Z, Beerhues L (2005) Biosynthesis of the hyperforin skeleton in Hypericum calycinum cell cultures. Phytochemistry 66:139–145PubMedCrossRefGoogle Scholar
  88. 88.
    Malik S, Mirjalili MH, Fett-Neto AG, Mazzafera P, Bonfill M (2013) Living between two worlds: two phase culture systems for producing plant secondary metabolites. Crit Rev Biotechnol 33:1–22PubMedCrossRefGoogle Scholar
  89. 89.
    Urbanová M, Košuth J, Cellárová E (2006) Genetic and biochemical analysis of Hypericum perforatum L. plants regenerated after cryopreservation. Plant Cell Rep 25:140–147PubMedCrossRefGoogle Scholar
  90. 90.
    Skyba M, Faltus M, Zámečník J, Čellárová E (2011) Thermal analysis of cryopreserved Hypericum perforatum L. shoot tips: cooling regime dependent dehydration and ice growth. Thermochim Acta 514:22–27CrossRefGoogle Scholar
  91. 91.
    Bruňáková K, Zámećník J, Urbanová M, Čellárová E (2011) Dehydration status of ABA-treated and cold-acclimated Hypericum perforatum L. shoot tips subjected to cryopreservation. Thermochim Acta 525:62–70CrossRefGoogle Scholar
  92. 92.
    Bruňáková K, Cellárová E (2016) Conservation strategies in the genus Hypericum via cryogenic treatment. Front Plant Sci 7:1–12CrossRefGoogle Scholar
  93. 93.
    Panis B, Lambardi M (2006) Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. United Nations Food and Agriculture Organization (FAO), RomeGoogle Scholar
  94. 94.
    Beerhues L (2011) Biosynthesis of the active Hypericum perforatum constituents. In: Odabas MS, Cirak C (eds) Medicinal and aromatic plant science and biotechnology. Global Science Books, IsleworthGoogle Scholar
  95. 95.
    Franklin G, Oliveira M, Dias ACP (2007) Production of transgenic Hypericum perforatum plants via particle bombardment-mediated transformation of novel organogenic cell suspension cultures. Plant Sci 172:1193–1203CrossRefGoogle Scholar
  96. 96.
    Tusevski O, Gadzovska Simic S (2013) Phenolic acids and flavonoids in Hypericum perforatum L. hairy roots. Int J Pharm Bio Sci 4:737–748Google Scholar
  97. 97.
    Zubrická D, Mišianiková A, Henzelyová J, Valletta A, De Angelis G, D’Auria FD, Simonetti G, Pasqua G, Céllárova E (2015) Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep 34:1953–1962PubMedCrossRefGoogle Scholar
  98. 98.
    Bertoli A, Giovannini A, Ruffoni B, Guardo AD, Spinelli G, Mazzetti M, Pistelli L (2008) Bioactive constituent production in St. John’s Wort in vitro hairy roots regenerated plant lines. J Agric Food Chem 56:5078–5082PubMedCrossRefGoogle Scholar
  99. 99.
    Koperdáková J, Komarovská H, Košuth J, Giovannini A, Čellárová E (2009) Characterization of hairy root-phenotype in transgenic Hypericum perforatum L. clones. Acta Physiol Plant 31:351–358CrossRefGoogle Scholar
  100. 100.
    Hou W, Shakya P, Franklin G (2016) A perspective on Hypericum perforatum genetic transformation. Front Plant Sci 7:1–12 Article 879CrossRefGoogle Scholar
  101. 101.
    Hageneder F (2007) Yew: a history. The History Press, StroudGoogle Scholar
  102. 102.
    Eichenberger C, Heiselmayer P (1995) Die Eibe (Taxus baccata) in Salzburg, Versuch einer Monographie, vol 7. WUV-Universitätsverlag, WienGoogle Scholar
  103. 103.
    Caesar GJ (53 BC) The gallic warsGoogle Scholar
  104. 104.
    Tekol Y (2007) The medieval physician Avicenna used an herbal calcium channel blocker, Taxus baccata L. Phytother Res 21:701–702PubMedCrossRefGoogle Scholar
  105. 105.
    Alam G (2004) Database on medical plants (Asia). CUTS Centre for International Trade, Economics and Environment, CalcuttaGoogle Scholar
  106. 106.
    Küpeli E, Erdemoğlu N, Yeşilada E, Şener B (2003) Anti-inflammatory and antinociceptive activity of taxoids and lignans from the heartwood of Taxus baccata L. J Ethnopharmacol 89:265–270PubMedCrossRefGoogle Scholar
  107. 107.
    Renneberg R (2007) Biotech history: yew trees, paclitaxel synthesis and fungi. Biotechnol J 2:1207–1209PubMedCrossRefGoogle Scholar
  108. 108.
    Itokawa H (2003) Introduction. In: Itokawa H, Lee K-H (eds) Taxus – the genus Taxus. Taylor & Francis, LondonGoogle Scholar
  109. 109.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327PubMedCrossRefGoogle Scholar
  110. 110.
    Kingston DGI (2000) Recent advances in the chemistry of taxol 1,2. J Nat Prod 63:726–734PubMedCrossRefGoogle Scholar
  111. 111.
    Cragg GM, Boyd MR, Cardellina JH II, Grever MR, Schepartz S, Snader KM, Suffness M (1993) The search for new pharmaceutical crops: drug discovery and development at the national cancer institute. Wiley, New YorkGoogle Scholar
  112. 112.
    Nims E, Dubois CP, Roberts SC, Walker EL (2006) Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Met Eng 8:385–394CrossRefGoogle Scholar
  113. 113.
    Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34CrossRefGoogle Scholar
  114. 114.
    Smith RF, Cameron SI (2002) Domesticating ground hemlock (Taxus canadensis) for producing taxanes: a case study. In: Proceedings of 29th annual meeting of the plant growth regulation society of America, LaGrange, Halifax, 40–45Google Scholar
  115. 115.
    Holton RA, Somoza C, Kim HB, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim S (1994) First total synthesis of taxol. 1. Functionalization of the B ring. J Am Chem Soc 116:1597–1598CrossRefGoogle Scholar
  116. 116.
    Wuts PGM (1998) Semisynthesis of taxol. Curr Opin Drug Discov Dev 1:329–337Google Scholar
  117. 117.
    Vongpaseuth K, Roberts SC (2007) Advancements in the understanding of paclitaxel metabolism in tissue culture. Curr Pharm Biotechnol 8:219–236PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Mountford PG (2010) The Taxol® story – development of a green synthesis via plant cell fermentation. In: Dunn PJ, Wells AS, Williams MT (eds) Green chemistry in the pharmaceutical industry. Wiley, New YorkGoogle Scholar
  119. 119.
    Kieran PM, MacLoughlin PF, Malone DM (1997) Plant cell suspension cultures: some engineering considerations. J Biotechnol 59:39–52PubMedCrossRefGoogle Scholar
  120. 120.
    Trejo-Tapia G, Hernández-Trujillo R, Trejo-Espino JL, Jiménez-Aparicio A, Rodríguez-Monroy M (2003) Analysis of morphological characteristics of Solanum chrysotrichum cell suspension cultures. World J Microb Biotchnol 19:929–932CrossRefGoogle Scholar
  121. 121.
    Jeffers P, Raposo S, Lima-Costa M-E, Connolly P, Glennon B, Kieran PM (2003) Focussed beam reflectance measurement (FBRM) monitoring of particle size and morphology in suspension cultures of Morinda citrifolia and Centaurea calcitrapa. Biotechnol Lett 25:2023–2028PubMedCrossRefGoogle Scholar
  122. 122.
    Grimm LH, Kelly S, Völkerding II, Krull R, Hempel DC (2005) Influence of mechanical stress and surface interaction on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 92:879–888PubMedCrossRefGoogle Scholar
  123. 123.
    Rudolph G, Lindner P, Bluma A, Joeris K, Martinez G, Hitzmann B, Scheper T (2010) Optical inline measurement procedures for counting and sizing cells in bioprocess technology. In: Rao G (ed) Optical sensor systems in biotechnology, vol 116. Springer, Berlin/Heidelberg, pp 125–142Google Scholar
  124. 124.
    Pearson AP, Glennon B, Kieran PM (2003) Comparison of morphological characteristics of Streptomyces natalensis by image analysis and focused beam reflectance measurement. Biotechnol Prog 19:1342–1347PubMedCrossRefGoogle Scholar
  125. 125.
    Ley I (2000) Assessing resolution and sensitivity in a laser diffraction particle size analyser. Am Lab 32:33–38Google Scholar
  126. 126.
    Lin PJ, Scholz A, Krull R (2010) Effect of volumetric power input by aeration and agitation on pellet morphology and product formation of Aspergillus niger. Biochem Eng J 49:213–220CrossRefGoogle Scholar
  127. 127.
    Wucherpfennig T, Hestler T, Krull R (2011) Morphology engineering – osmolality and its effect on Aspergillus niger morphology and productivity. Microb Cell Factories:11–58Google Scholar
  128. 128.
    Rønnest N, Stocks S, Lantz A, Gernaey K (2012) Comparison of laser diffraction and image analysis for measurement of Streptomyces coelicolor cell clumps and pellets. Biotechnol Lett 34:1465–1473PubMedCrossRefGoogle Scholar
  129. 129.
    Kongsawadworakul P, Chrestin H (2003) Laser Diffraction: a new tool for identification and studies of physiological effectors involved in aggregation-coagulation of the rubber particles from Hevea latex. Plant Cell Physiol 44:707–717PubMedCrossRefGoogle Scholar
  130. 130.
    Krull R, Wucherpfennig T, Eslahpazir Esfandabadi M, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C (2013) Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 163:112–123PubMedCrossRefGoogle Scholar
  131. 131.
    Meijer JJ, ten Hoopen HJG, Luyben KCAM, Libbenga KR (1993) Effects of hydrodynamic stress on cultured plant cells: a literature survey. Enzym Microb Technol 15:234–238CrossRefGoogle Scholar
  132. 132.
    Midler M, Finn RK (1966) A model system for evaluating shear in the design of stirred fermentors. Biotechnol Bioeng 8:71–84CrossRefGoogle Scholar
  133. 133.
    Mandels M (1972) The culture of plant cells. Adv Biochem Eng 2:201–215CrossRefGoogle Scholar
  134. 134.
    Dunlop EH, Namdev PK, Rosenberg MZ (1994) Effect of fluid shear forces on plant cell suspensions. Chem Eng Sci 49:2263–2276CrossRefGoogle Scholar
  135. 135.
    Joshi JB, Elias CB, Patole MS (1996) Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Chem Eng J/Biochem Eng J 62:121–141CrossRefGoogle Scholar
  136. 136.
    Papoutsakis ET (1991) Fluid-mechanical damage of animal cells in bioreactors. Trends Biotechnol 9:427–437PubMedCrossRefGoogle Scholar
  137. 137.
    Scragg AH, Allan EJ, Leckie F (1988) Effect of shear on the viability of plant cell suspensions. Enzym Microb Technol 10:361–367CrossRefGoogle Scholar
  138. 138.
    Takeda T, Tamura M, Ohtaki M, Matsuoka H (2003) Gene expression in cultured strawberry cells subjected to hydrodynamic stress. Biochem Eng J 15:211–215CrossRefGoogle Scholar
  139. 139.
    Tanaka H (1981) Technological problems in cultivation of plant cells at high density. Biotechnol Bioeng 23:1203–1218CrossRefGoogle Scholar
  140. 140.
    Tanaka H, Semba H, Jitsufuchi T, Harada H (1988) The effect of physical stress on plant cells in suspension cultures. Biotechnol Lett 10:485–490CrossRefGoogle Scholar
  141. 141.
    Hooker BS, Lee JM, An G (1989) Response of plant tissue culture to a high shear environment. Enzym Microb Technol 11:484–490CrossRefGoogle Scholar
  142. 142.
    Leckie F, Scraggs AH, Cliffe KR (1991) Effect of impeller design and speed on the large-scale cultivation of suspension cultures of Catharanthus roseus. Enzym Microb Technol 13:801–810CrossRefGoogle Scholar
  143. 143.
    Zhong C, Yuan YJ (2009) Responses of Taxus cuspidata to hydrodynamics in bubble column bioreactors with different sparging nozzle sizes. Biochem Eng J 45:100–106CrossRefGoogle Scholar
  144. 144.
    Zhao D, Xing J, Li M, Lu D, Zhao Q (2001) Optimization of growth and jaceosidin production in callus and cell suspension cultures of Saussurea medusa. Plant Cell Tiss Org 67:227–234CrossRefGoogle Scholar
  145. 145.
    Märkl H, Bronnenmeier R, Wittek B (1987) Hydrodynamische Belastbarkeit von Mikroorganismen. Chem Ing Tech 59(12):907–917CrossRefGoogle Scholar
  146. 146.
    Bruňáková K, Babincová Z, Čellárová E (2004) Selection of callus cultures of Taxus baccata L. as a potential source of paclitaxel production. Eng Life Sci 4(5):465–469CrossRefGoogle Scholar
  147. 147.
    Bruňáková K, Babincová Z, Čellárová E (2005) Production of taxanes in callus and suspension cultures of Taxus baccata L. In: Hvoslef-Eide A, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, NetherlandsGoogle Scholar
  148. 148.
    Wickremesinhe ERM, Arteea RN (1993) Taxus callus cultures: initiation, growth optimization, characterization and taxol production. Plant Cell Tiss Org 35:181–193CrossRefGoogle Scholar
  149. 149.
    Wucherpfennig T, Schulz A, Pimentel A, Corkidi G, Sieblitz D, Pump M, Gorr G, Schütte K, Wittmann C, Krull R (2014) Viability characterization of Taxus chinensis plant cell suspension cultures by rapid colorimetric- and image analysis-based techniques. Bioproc Biosyst Eng 37:1799–1808CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mariam Gaid
    • 2
    • 3
  • Thomas Wucherpfennig
    • 1
  • Stephan Scholl
    • 2
    • 3
  • Ludger Beerhues
    • 2
    • 3
  • Rainer Krull
    • 2
    • 3
    Email author
  1. 1.Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Institute of Pharmaceutical BiologyTechnische Universität BraunschweigBraunschweigGermany
  3. 3.Center of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations