• Clifford C. Walters
  • Meytal B. Higgins
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Petroleum, one of the most complex organic mixtures in nature, is derived from biochemicals deposited in sediments that are then buried and thermally altered. Petroleomics aims at a complete molecular description of petroleum, the petroleome, from which all physical properties – such as density, viscosity, phase behavior, and interfacial activity – and chemical reactivity – such as reservoir alteration and refinery upgrading processes – could be modeled. Although petroleomics has its roots in decades of petroleum chemical characterization, its modern conception is less than 20 years old. It is only through recent analytical advances, such as ultrahigh-resolution mass spectrometry, that an approximation of the petroleome is possible. The ability to use the petroleome to predict physical properties and chemical reactivity is just emerging.


  1. Adams RK, Zabarnick S, West ZJ, Striebich RC, Johnson DW (2013) Chemical analysis of jet fuel polar, heteroatomic species via high-performance liquid chromatography with electrospray ionization–mass spectrometric detection. Energy Fuels 27:2390–2398CrossRefGoogle Scholar
  2. Alshareef AH, Scherer A, Tan X, Azyat K, Stryker JM, Tykwinski RR, Gray MR (2012) Effect of chemical structure on the cracking and coking of archipelago model compounds representative of asphaltenes. Energy Fuels 26:1828–1843CrossRefGoogle Scholar
  3. Altgelt KH, Boduszynski MM (1993) Composition and analysis of heavy petroleum fractions. CRC Press, Boca Raton. 512 ppCrossRefGoogle Scholar
  4. Alvarez-Majmutov A, Chen J, Gieleciak R (2016) Molecular-level modeling and simulation of vacuum gas oil hydrocracking. Energy Fuels 30:138–148CrossRefGoogle Scholar
  5. Araújo BQ, Azevedo DA (2016) Uncommon steranes in Brazilian marginal crude oils: Dinoflagellate molecular fossils in the Sergipe-Alagoas Basin, Brazil. Org Geochem 99:38–52CrossRefGoogle Scholar
  6. Barrow MP, Headley JV, Peru KM, Derrick PJ (2004) Fourier transform ion cyclotron resonance mass spectrometry of principal components in oilsands naphthenic acids. J Chromatogr A 1058:51–59PubMedCrossRefGoogle Scholar
  7. Bataglion GA, Meurer E, de Albergaria-Barbosa ACR, Bícego MC, Weber RR, Eberlin MN (2015) Determination of geochemically important sterols and triterpenols in sediments using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS). Anal Chem 87:7771–7778PubMedCrossRefGoogle Scholar
  8. Bayona JM, Domínguez C, Albaigés J (2015) Analytical developments for oil spill fingerprinting. Trends Environ Anal Chem 5:26–34CrossRefGoogle Scholar
  9. Becker KW, Lipp JS, Zhu C, Liu X-L, Hinrichs K-U (2013) An improved method for the analysis of archaeal and bacterial ether core lipids. Org Geochem 61:34–44CrossRefGoogle Scholar
  10. Bertoncini F, Courtiade-Tholance M, Thiebaut D (2013) Gas chromatography and 2D-gas chromatography for petroleum industry. The race for selectivity. Editions Technip, Paris. 368 ppGoogle Scholar
  11. Bissada KK, Tan J, Szymczyk E, Darnell M, Mei M (2016) Group-type characterization of crude oil and bitumen. Part I: enhanced separation and quantification of saturates, aromatics, resins and asphaltenes (SARA). Org Geochem 95:21–28CrossRefGoogle Scholar
  12. Boduszynski MM (1988) Composition of heavy petroleums. 2. Molecular characterization. Energy Fuels 2:597–613CrossRefGoogle Scholar
  13. Borton D, Pinkston DS, Hurt MR, Tan X, Azyat K, Tykwinski R, Gray M, Qian K, Kenttämaa HI (2010) Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry. Energy Fuels 24:5548–5559CrossRefGoogle Scholar
  14. Boysen RB, Schabron JF (2013) The automated asphaltene determinator coupled with saturates, aromatics, and resins separation for petroleum residua characterization. Energy Fuels 27:654–4661CrossRefGoogle Scholar
  15. Bray EE, Evans ED (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta 22:2–15CrossRefGoogle Scholar
  16. Brocart B, Bourrel M, Hurtevent C, Volle J-L, Escoffier B (2007) ARN-type naphthenic acids in crudes: analytical detection and physical properties. J Dispers Sci Technol 28:331–337CrossRefGoogle Scholar
  17. Chen H, Hou A, Corilo YE, Lin Q, Lu J, Mendelssohn IA, Zhang R, Rodgers RP, McKenna AM (2016) 4 years after the Deepwater Horizon spill: molecular transformation of Macondo well oil in Louisiana salt marsh sediments revealed by FT-ICR mass spectrometry. Environ Sci Technol 50:9061–9069PubMedCrossRefGoogle Scholar
  18. Cho Y, Witt M, Jin JM, Kim YH, Nho N-S, Kim S (2014) Evaluation of laser desorption ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry to study metalloporphyrin complexes. Energy Fuels 28:6699–6706CrossRefGoogle Scholar
  19. Cho Y, Ahmed A, Islam A, Kim S (2015) Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. Mass Spectrom Rev 34:248–263PubMedCrossRefGoogle Scholar
  20. Corilo YE, Podgorski DC, McKenna AM, Lemkau KL, Reddy CM, Marshall AG, Rodgers RP (2013) Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal Chem 85:9064–9069PubMedCrossRefGoogle Scholar
  21. Crawford KE, Campbell JL, Fiddler MN, Duan P, Qian K, Gorbaty ML, Kenttamaa HI (2005) Laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry for petroleum distillate analysis. Anal Chem 77:7916–7923PubMedCrossRefGoogle Scholar
  22. da Cunha ALMC, Sá A, Mello SC, Vásquez-Castro YE, Luna AS, Aucelio RQ (2016) Determination of nitrogen-containing polycyclic aromatic compounds in diesel and gas oil by reverse-phase high performance liquid chromatography using introduction of sample as detergentless microemulsion. Fuel 176:119–129CrossRefGoogle Scholar
  23. da Silveira GD, Faccin H, Claussen L, Goularte RB, Nascimento PC, Bohrer D, Cravo M, Leite LFM, de Carvalho LM (2016) A liquid chromatography–atmospheric pressure photoionization tandem mass spectrometric method for the determination of organosulfur compounds in petroleum asphalt cements. J Chromatogr A 1457:29–40PubMedCrossRefGoogle Scholar
  24. De la Rue W, Miller H (1856) Chemical examination of Burmese naphtha or Rangoon tar. Proc R Soc Lond 8:221–228CrossRefGoogle Scholar
  25. Dias HP, Pereira TMC, Vanini G, Dixini PV, Celante VG, Castro EVR, Vaz BG, Fleming FP, Gomes AO, Aquije GMFV, Romão W (2014) Monitoring the degradation and the corrosion of naphthenic acids by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and atomic force microscopy. Fuel 126:85–95CrossRefGoogle Scholar
  26. Dijkmans T, Van Geem KM, Djokic MR, Marin GB (2014) Combined comprehensive two-dimensional gas chromatography analysis of polyaromatic hydrocarbons/polyaromatic sulfur-containing hydrocarbons (PAH/PASH) in complex matrices. Ind Eng Chem Res 53:15436–15446CrossRefGoogle Scholar
  27. Dijkmans T, Djokic MR, Van Geem KM, Marin GB (2015) Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC × GC – FID/SCD/NCD/TOF-MS. Fuel 140:398–406CrossRefGoogle Scholar
  28. Dutriez T, Borras J, Courtiade M, Thiébaut D, Dulot H, Bertoncini F, Hennion M-C (2011) Challenge in the speciation of nitrogen-containing compounds in heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography. J Chromatogr A 1218:3190–3199PubMedCrossRefGoogle Scholar
  29. Dutta Majumdar R, Bake KD, Ratna Y, Pomerantz AE, Mullins OC, Gerken M, Hazendonk P (2016) Single-core PAHs in petroleum- and coal-derived asphaltenes: size and distribution from solid-state NMR spectroscopy and optical absorption measurements. Energy Fuels 30:6892–6906CrossRefGoogle Scholar
  30. Eglinton G, Hamilton RJ, Hodges R, Raphael RA (1959) Gas-liquid chromatography of natural products and their derivatives. Chem Ind (Lond) 1959: 955–957Google Scholar
  31. Eglinton G, Maxwell JR, Evershed RP, Barwise AJG (1985) Red pigments in petroleum exploration. Interdiscip Sci Rev 10:222–236CrossRefGoogle Scholar
  32. Eiserbeck C, Nelson RK, Grice K, Curiale J, Reddy CM, Raiteri P (2011) Separation of 18α(H)-, 18β(H)-oleanane and lupane by comprehensive two-dimensional gas chromatography. J Chromatogr A 1218:5549–5553PubMedCrossRefGoogle Scholar
  33. Eiserbeck C, Nelson RK, Reddy CM, Grice K (2015) Advances in comprehensive two-dimensional gas chromatography (GC × GC). In: Grice K (ed) Principles and practice of analytical techniques in geosciences. The Royal Society of Chemistry, Cambridge, pp 324–365Google Scholar
  34. Espinosa M, Pacheco US, Leyte F, Ocampo R (2014) Separation and identification of porphyrin biomarkers from a heavy crude oil Zaap-1 offshore well, Sonda de Campeche, México. J Porphyrins Phthalocyanines 18:542–551CrossRefGoogle Scholar
  35. Fang Z, He C, Li Y, Chung KH, Xu C, Shi Q (2016) Fractionation and characterization of dissolved organic matter (DOM) in refinery wastewater by revised phase retention and ion-exchange adsorption solid phase extraction followed by ESI FT-ICR MS. Talanta 162:466–473PubMedCrossRefGoogle Scholar
  36. Gao J, Owen BC, Borton DJ, Jin Z, Kenttämaa HI (2012) HPLC/APCI mass spectrometry of saturated and unsaturated hydrocarbons by using hydrocarbon solvents as the APCI reagent and HPLC mobile phase. J Am Soc Mass Spectrom 23:816–822PubMedCrossRefGoogle Scholar
  37. Gaspar A, Schrader W (2012) Expanding the data depth for the analysis of complex crude oil samples by Fourier transform ion cyclotron resonance mass spectrometry using the spectral stitching method. Rapid Commun Mass Spectrom 26:1047–1052PubMedCrossRefGoogle Scholar
  38. Gaspar A, Zellermann E, Lababidi S, Reece J, Schrader W (2012) Impact of different ionization methods on the molecular assignments of asphaltenes by FT-ICR mass spectrometry. Anal Chem 84:5257–5267PubMedCrossRefGoogle Scholar
  39. Gonsior M, Peake BM, Cooper WT, Podgorski D, D’Andrilli J, Cooper WJ (2009) Photochemically induced changes in dissolved organic matter identified by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 43:698–703PubMedCrossRefGoogle Scholar
  40. Grizzle PL, Sablotny DM (1986) Automated liquid-chromatographic compound class group-type separation of crude oils and bitumens using chemically bonded aminosilane. Anal Chem 58:2389–2396CrossRefGoogle Scholar
  41. Grob RL, Barry EF (2004) Modern practice of gas chromatography, 4th edn. Wiley, Hoboken. 1064 ppCrossRefGoogle Scholar
  42. Guigue J, Harir M, Mathieu O, Lucio M, Ranjard L, Lévêque J, Schmitt-Kopplin P (2016) Ultrahigh-resolution FT-ICR mass spectrometry for molecular characterisation of pressurised hot water-extractable organic matter in soils. Biogeochemistry 128:307–326CrossRefGoogle Scholar
  43. Han X, MacKinnon MD, Martin JW (2009) Estimating the in situ biodegradation of naphthenic acids in oil sands process waters by HPLC/HRMS. Chemosphere 76:63–70PubMedCrossRefGoogle Scholar
  44. Hayes PC, Anderson SD (1988) Paraffins, olefins, naphthenes and aromatics analysis of selected hydrocarbon distillates using on-line column switching high-performance liquid chromatography with dielectric constant detection. J Chromatogr A 437:365–377CrossRefGoogle Scholar
  45. Headley JV, Peru KM, Barrow MP (2016) Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil – a review. Mass Spectrom Rev 35:311–328PubMedCrossRefGoogle Scholar
  46. Hegazi AH, Fathalla EM, Panda SK, Schrader W, Andersson JT (2012) High-molecular weight sulfur-containing aromatics refractory to weathering as determined by Fourier transform ion cyclotron resonance mass spectrometry. Chemosphere 89:205–212PubMedCrossRefGoogle Scholar
  47. Higgins MB, Robinson RS, Casciotti KL, McIlvin MR, Pearson A (2009) A method for determining the nitrogen isotopic composition of porphyrins. Anal Chem 81:184–192PubMedCrossRefGoogle Scholar
  48. Hopmans EC, Schouten S, Pancost RD, van der Meer MTJ, Singhe Damsté JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589PubMedCrossRefGoogle Scholar
  49. Hsu CS (2012) Mass resolving power for molecular formula determination. Energy Fuels 26:1169–1177CrossRefGoogle Scholar
  50. Hsu CS, Drinkwater D (2001) Chapter 3. GC/MS in the petroleum industry. In: Niessen WMA (ed) Current practice in gas chromatography-mass spectrometry. Dekker Marcel, New-York, pp 55–94Google Scholar
  51. Hsu CS, Hendrickson CL, Rodgers RP, McKenna AM, Marshall AG (2011) Petroleomics: advanced molecular probe for petroleum heavy ends. J Mass Spectrom 46:337–343PubMedCrossRefGoogle Scholar
  52. Huang R, McPhedran KN, Gamal El-Din M (2015) Ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry characterization of naphthenic acids species from oil sands process-affected water. Environ Sci Technol 49:11737–11745PubMedCrossRefGoogle Scholar
  53. Hughey CA, Hendrickson CL, Rodgers RP, Marshall AG (2001) Kendrick mass defect spectrum: a compact visual analysis for ultra-high resolution broadband mass spectra. Anal Chem 73:4676–4681PubMedCrossRefGoogle Scholar
  54. Hughey CA, Rodgers RP, Marshall AG (2002) Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal Chem 36:4145–4149CrossRefGoogle Scholar
  55. Hughey CA, Rodgers RP, Marshall AG, Walters CC, Qian K, Mankiewicz P (2004) Acidic and neutral polar NSO compounds in Smackover oils of different thermal maturity revealed by electrospray high field Fourier transform ion cyclotron resonance mass spectrometry. Org Geochem 35:863–880CrossRefGoogle Scholar
  56. Hughey CA, Galasso SA, Zumberge JE (2007) Detailed compositional comparison of acidic NSO compounds in biodegraded reservoir and surface crude oils by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Fuel 86:758–768CrossRefGoogle Scholar
  57. Hur M, Yeo I, Kim E, No M-h, Koh J, Cho YJ, Lee JW, Kim S (2010a) Correlation of FT-ICR mass spectra with the chemical and physical properties of associated crude oils. Energy Fuels 24:5524–5532CrossRefGoogle Scholar
  58. Hur M, Yeo I, Park E, Kim YH, Yoo J, Kim E, No M-h, Koh J, Kim S (2010b) Combination of statistical methods and Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive, molecular-level interpretations of petroleum samples. Anal Chem 82:211–218PubMedCrossRefGoogle Scholar
  59. Ikeya K, Sleighter RL, Hatcher PG, Watanabe A (2015) Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance mass spectrometry. Geochim Cosmochim Acta 153:169–182CrossRefGoogle Scholar
  60. Islam A, Cho Y, Yim UH, Shim WJ, Kim YH, Kim S (2013) The comparison of weathered oil spills at two stages and photo-degraded oil at one stage at the molecular level by a combination of SARA fractionation and FT-ICR MS. J Hazard Mater 263(Part 2):404–411PubMedCrossRefGoogle Scholar
  61. Jaffe SB, Freund H, Olmstead WN (2005) Extension of structure-oriented lumping to vacuum residua. Ind Eng Chem Res 44:9840–9852CrossRefGoogle Scholar
  62. Johnson AL, Freeman DH (1990) Systematic preparative methods for petroporphyrin purification. Energy Fuels 4:695–699CrossRefGoogle Scholar
  63. Junium CK, Freeman KH, Arthur MA (2015) Controls on the stratigraphic distribution and nitrogen isotopic composition of zinc, vanadyl and free base porphyrins through Oceanic Anoxic Event 2 at Demerara Rise. Org Geochem 80:60–71CrossRefGoogle Scholar
  64. Juyal P, Yen AT, Rodgers RP, Allenson S, Wang J, Creek J (2010) Compositional variations between precipitated and organic solid deposition control (OSDC) asphaltenes and the effect of inhibitors on deposition by electrospray ionization Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Energy Fuels 24:2320–2326CrossRefGoogle Scholar
  65. Karimi A, Qian K, Olmstead WN, Freund H, Yung C, Gray MR (2011) Quantitative evidence for bridged structures in asphaltenes by thin film pyrolysis. Energy Fuels 25:3581–3589CrossRefGoogle Scholar
  66. Kashiyama Y, Kitazato H, Ohkouchi N (2007) An improved method for isolation and purification of sedimentary porphyrins by high-performance liquid chromatography for compound-specific isotopic analysis. J Chromatogr A 1138:73–83PubMedCrossRefGoogle Scholar
  67. Kekäläinen T, Pakarinen JMH, Wickström K, Vainiotalo P (2009) Compositional study of polar species in untreated and hydrotreated gas oil samples by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTIC-MS). Energy Fuels 23:6055–6061CrossRefGoogle Scholar
  68. Khorassani MA, Taylor LT (1989) Application of sub- and supercritical fluid chromatography to vanadium and nickel porphyrins. J Chromatogr Sci 27:329–333CrossRefGoogle Scholar
  69. Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem 75:5336–5344PubMedCrossRefGoogle Scholar
  70. Kim S, Stanford LA, Rodgers RP, Marshall AG, Walters CC, Qian K, Wenger LM, Mankiewicz P (2005) Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. Org Geochem 36:1117–1134CrossRefGoogle Scholar
  71. Kim S, Kaplan LA, Hatcher PG (2006a) Biodegradable dissolved organic matter in a temperate and a tropical stream determined from ultra-high resolution mass spectrometry. Limnol Oceanogr 51:1054–1063CrossRefGoogle Scholar
  72. Kim S, Rodgers RP, Marshall AG (2006b) Truly “exact” mass: elemental composition can be determined uniquely from molecular mass measurement at ~0.1 mDa accuracy for molecules up to ~500 Da. Int J Mass Spectrom 251:260–265CrossRefGoogle Scholar
  73. Klein GC, Angström A, Rodgers RP, Marshall AG (2006) Use of saturates/aromatics/resins/asphaltenes (SARA) fractionation to determine matrix effects in crude oil analysis by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 20:668–672CrossRefGoogle Scholar
  74. Klitzke CF, Corilo YE, Siek K, Binkley J, Patrick J, Eberlin MN (2012) Petroleomics by ultrahigh-resolution time-of-flight mass spectrometry. Energy Fuels 26:5787–5794CrossRefGoogle Scholar
  75. Koch BP, Witt M, Engbrodt R, Dittmar T, Kattner G (2005) Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Geochim Cosmochim Acta 69:3299–3308CrossRefGoogle Scholar
  76. Kujawinski EB, Hatcher PG, Freitas MA (2002) High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids: improvements and comparisons. Anal Chem 74:413–419PubMedCrossRefGoogle Scholar
  77. Kujawinski EB, Del Vecchio R, Blough NV, Klein GC, Marshall AG (2004) Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 92:23–37CrossRefGoogle Scholar
  78. Kujawinski EB, Longnecker K, Blough NV, Del Vecchio R, Finlay L, Kitner JB, Giovannoni SJ (2009) Identification of possible source markers in marine dissolved organic matter using ultrahigh-resolution mass spectrometry. Geochim Cosmochim Acta 73:4384–4399CrossRefGoogle Scholar
  79. Lengger SK, Scarlett AG, West CE, Rowland SJ (2013) Diamondoid diacids (‘O4’ species) in oil sands process-affected water. Rapid Commun Mass Spectrom 27:2648–2654PubMedCrossRefGoogle Scholar
  80. Levy JM (1994) Fossil fuel applications of SFC and SFE: a review. J High Resolut Chromatogr 17:212–216CrossRefGoogle Scholar
  81. Li S, Shi Q, Pang X, Zhang B, Zhang H (2012) Origin of the unusually high dibenzothiophene oils in Tazhong-4 Oilfield of Tarim Basin and its implication in deep petroleum exploration. Org Geochem 48:56–80CrossRefGoogle Scholar
  82. Li Y, Xu C, Chung KH, Shi Q (2015) Molecular characterization of dissolved organic matter and its subfractions in refinery process water by Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 29:2923–2930CrossRefGoogle Scholar
  83. Liao Y, Shi Q, Hsu CS, Pan Y, Zhang Y (2012) Distribution of acids and nitrogen-containing compounds in biodegraded oils of the Liaohe Basin by negative ion ESI FT-ICR MS. Org Geochem 47:51–65CrossRefGoogle Scholar
  84. Liu P, Li M, Jiang Q, Cao T, Sun Y (2015) Effect of secondary oil migration distance on composition of acidic NSO compounds in crude oils determined by negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Org Geochem 78:23–31CrossRefGoogle Scholar
  85. Liu X-L, Summons RE, Higgins MB, Walters CC (2017) Esterified glycerol dialkyl glycerol tetraethers derived from low temperature thermal diagensis of microial lipids. In: 28th international meeting on organic geochemistry, p 98Google Scholar
  86. Llewelyn JM, Landing WM, Marshall AG, Cooper WT (2002) Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of dissolved organic phosphorus species in a treatment wetland after selective isolation and concentration. Anal Chem 74:600–606PubMedCrossRefGoogle Scholar
  87. Lung S-CC, Liu C-H (2015) Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry. Sci Rep 5:12992PubMedPubMedCentralCrossRefGoogle Scholar
  88. Magi E, Ianni C, Rivaro P, Frache R (2001) Determination of porphyrins and metalloporphyrins using liquid chromatography-diode array deterction and mass spectrometry. J Chromatogr A 905:141–149PubMedCrossRefGoogle Scholar
  89. Mapolelo MM, Stanford LA, Rodgers RP, Yen AT, Debord JD, Asomaning S, Marshall AG (2009) Chemical speciation of calcium and sodium naphthenate deposits by electrospray ionization FT-ICR mass spectrometry. Energy Fuels 23:349–355CrossRefGoogle Scholar
  90. Marriott PJ, Chin S-T, Maikhunthod B, Schmarr H-G, Bieri S (2012) Multidimensional gas chromatography. TrAC Trends Anal Chem 34:1–21CrossRefGoogle Scholar
  91. Marshall AG, Rodgers RP (2008) Petroleomics: chemistry of the underworld. Proc Natl Acad Sci 105:18090–18095PubMedPubMedCentralCrossRefGoogle Scholar
  92. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35PubMedCrossRefGoogle Scholar
  93. Mawson DH, Walker JS, Keely BJ (2004) Variations in the distributions of sedimentary alkyl porphyrins in the Mulhouse basin in response to changing environmental conditions. Org Geochem 35:1229–1241CrossRefGoogle Scholar
  94. McDonald GR (2011) Georgius Agricola and the invention of petroleum. Bibl Hum Renaiss 73:351–364Google Scholar
  95. McKee GA, Hatcher PG (2015) A new approach for molecular characterization of sediments with Fourier transform ion cyclotron resonance mass spectrometry: extraction optimisation. Org Geochem 85:22–31CrossRefGoogle Scholar
  96. McKenna AM, Purcell JM, Rodgers RP, Marshall AG (2009) Identification of vanadyl porphyrins in a heavy crude oil and raw asphaltene by atmospheric pressure photoionization Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Energy Fuels 23:2122–2128CrossRefGoogle Scholar
  97. McKenna AM, Nelson RK, Reddy CM, Savory JJ, Kaiser NK, Fitzsimmons JE, Marshall AG, Rodgers RP (2013) Expansion of the analytical window for oil spill characterization by ultrahigh-resolution mass spectrometry: beyond gas chromatography. Environ Sci Technol 47:7530–7539PubMedCrossRefGoogle Scholar
  98. McKenna AM, Williams JT, Putman JC, Aeppli C, Reddy CM, Valentine DL, Lemkau KL, Kellermann MY, Savory JJ, Kaiser NK, Marshall AG, Rodgers RP (2014) Unprecedented ultrahigh-resolution FT-ICR mass spectrometry and parts-per-billion mass accuracy enable direct characterization of nickel and vanadyl porphyrins in petroleum from natural seeps. Energy Fuels 28:2454–2464CrossRefGoogle Scholar
  99. Mennito AS, Qian K (2013) Characterization of heavy petroleum saturates by laser desorption silver cationization and Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 27:7348–7353CrossRefGoogle Scholar
  100. Meredith W, Kelland S-J, Jones DM (2000) Influence of biodegradation on crude oil acidity and carboxylic acid composition. Org Geochem 31:1059–1073CrossRefGoogle Scholar
  101. Mogollón NGS, Prata PS, dos Reis JZ, Neto EVdS, Augusto F (2016) Characterization of crude oil biomarkers using comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry. J Sep Sci 39:3384–3391PubMedCrossRefGoogle Scholar
  102. Mullins OC (2010) The modified Yen model. Energy Fuels 24:2179–2207CrossRefGoogle Scholar
  103. Mullins OC, Sheu EY, Hammami A, Marshall AG (2006) Asphaltenes, heavy oils, and petroleomics. Springer-Verlag New York, 670 ppGoogle Scholar
  104. Nelson RK, Aeppli C, Samuel J, Chen H, de Oliveira AHB, Eiserbeck C, Frysinger GS, Gaines RB, Grice K, Gros J, Hall GJ, Koolen HHF, Lemkau KL, McKenna AM, Reddy CM, Rodgers RP, Swarthout RF, Valentine DL, White HK (2016) Applications of comprehensive two-dimensional gas chromatography (GC × GC) in studying the source, transport, and fate of petroleum hydrocarbons in the environment. In: Stout SA, Wang Z (eds) Standard handbook oil spill environmental forensics, 2nd edn. Academic, Boston, pp 399–448CrossRefGoogle Scholar
  105. Nizio KD, McGinitie TM, Harynuk JJ (2012) Comprehensive multidimensional separations for the analysis of petroleum. J Chromatogr A 1255:12–23PubMedCrossRefGoogle Scholar
  106. Oldenburg TBP, Brown M, Bennett B, Larter SR (2014) The impact of thermal maturity level on the composition of crude oils, assessed using ultra-high resolution mass spectrometry. Org Geochem 75:151–168CrossRefGoogle Scholar
  107. Oro NE, Lucy CA (2013) Analysis of the nitrogen content of distillate cut gas oils and treated heavy gas oils using normal phase HPLC, fraction collection and petroleomic FT-ICR MS data. Energy Fuels 27:35–45CrossRefGoogle Scholar
  108. Oro NE, Whittal RM, Lucy CA (2012) Sample handling and contamination encountered when coupling offline normal phase high performance liquid chromatography fraction collection of petroleum samples to Fourier transform ion cyclotron resonance mass spectrometry. Anal Chim Acta 741:70–77PubMedCrossRefGoogle Scholar
  109. Orrego-Ruiz JA, Gomez-Escudero A, Rojas-Ruiz FA (2016) Combination of negative electrospray ionization and positive atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry as a quantitative approach of acid species in crude oils. Energy Fuels 30:8209–8215CrossRefGoogle Scholar
  110. Pearson CD, Gharfeh SG (1986) Automated high-performance liquid chromatography determination of hydrocarbon types in crude oil residues using a flame ionization detector. Anal Chem 58:307–311CrossRefGoogle Scholar
  111. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide, vol 1 & 2, 2nd edn. Cambridge University Press, New York. 1155 ppGoogle Scholar
  112. Petkewich R (2003) “Cracking” the structure of petroleum. Sophisticated mass spectrometry method may fingerprint crude oil. Environ Sci Technol 37:206A–207APubMedCrossRefGoogle Scholar
  113. Pinkston DS, Duan P, Gallardo VA, Habicht SC, Tan X, Qian K, Gray M, Müllen K, Kenttämaa HI (2009) Analysis of asphaltenes and asphaltene model compounds by laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 23:5564–5570CrossRefGoogle Scholar
  114. Pitcher A, Hopmans EC, Schouten S, Sinninghe Damsté JS (2009) Separation of core and intact polar archaeal tetraether lipids using silica columns: insights into living and fossil biomass contributions. Org Geochem 40:12–19CrossRefGoogle Scholar
  115. Podgorski DC, Corilo YE, Nyadong L, Lobodin VV, Bythell BJ, Robbins WK, McKenna AM, Marshall AG, Rodgers RP (2013) Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revealed. Energy Fuels 27:1268–1276CrossRefGoogle Scholar
  116. Pomerantz AE, Ventura GT, McKenna AM, Cañas JA, Auman J, Koerner K, Curry D, Nelson RK, Reddy CM, Rodgers RP, Marshall AG, Peters KE, Mullins OC (2010) Combining biomarker and bulk compositional gradient analysis to assess reservoir connectivity. Org Geochem 41:812–821CrossRefGoogle Scholar
  117. Pomerantz AE, Mullins OC, Paul G, Ruzicka J, Sanders M (2011) Orbitrap mass spectrometry: a proposal for routine analysis of non-volatile components of petroleum. Energy Fuels 25:3077–3082CrossRefGoogle Scholar
  118. Poole CF (ed) (2017) Supercritical fluid chromatograph. Elsevier, Amsterdam. 560 ppGoogle Scholar
  119. Pudenzi MA, Eberlin MN (2016) Assessing relative electrospray ionization, atmospheric pressure photoionization, atmospheric pressure chemical ionization, and atmospheric pressure photo- and chemical ionization efficiencies in mass spectrometry petroleomic analysis via pools and pairs of selected polar compound standards. Energy Fuels 30:7125–7133CrossRefGoogle Scholar
  120. Qian K, Robbins WK, Hughey CA, Cooper HJ, Rodgers RP, Marshall AG (2001a) Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 15:1505–1511CrossRefGoogle Scholar
  121. Qian K, Rodgers RP, Hendrickson CL, Emmett MR, Marshall AG (2001b) Reading chemical fine print: resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energy Fuels 15:492–498CrossRefGoogle Scholar
  122. Qian K, Mennito AS, Edwards KE, Ferrughelli DT (2008a) Observation of vanadyl porphyrins and sulfur-containing vanadyl porphyrins in a petroleum asphaltene by atmospheric pressure photonionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 22:2153–2160PubMedCrossRefGoogle Scholar
  123. Qian K, Edwards KE, Dechert GJ, Jaffe SB, Green LA, Olmstead WN (2008b) Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry. Anal Chem 80:849–855PubMedCrossRefGoogle Scholar
  124. Qian K, Edwards KE, Mennito AS, Walters CC, Kushnerick JD (2010) Enrichment, resolution, and identification of nickel porphyrins in petroleum asphaltene by cyclograph separation and atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 82:413–419PubMedCrossRefGoogle Scholar
  125. Qian K, Edwards KE, Mennito AS, Freund H, Saeger RB, Hickey KJ, Francisco MA, Yung C, Chawla B, Wu C, Kushnerick JD, Olmstead WN (2012) Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 84:4544–4551PubMedCrossRefGoogle Scholar
  126. Qian K, Edwards K, Mennito A, Saeger RB (2016) Generation of model of composition of petroleum by high resolution mass spectrometry and associated analytics. US Patent 9490109Google Scholar
  127. Rabkin YM, Lafitte-Houssat JJ (1979) Cooperative research in petroleum chemistry. Scientometrics 1:327–338CrossRefGoogle Scholar
  128. Robbins WK (1998) Quantitative measurement of mass and aromaticity distributions for heavy distillates 1. Capabilities of the HPLC-2 system. J Chromatogr Sci 36:457–466CrossRefGoogle Scholar
  129. Rodgers RP, Marshall AG (2007) Petroleomics: advanced characterization of petroleum-derived materials by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In: Mullins OC, Sheu EY, Hammami A, Marshall AG (eds) Asphaltenes, heavy oils, and petroleomics. Springer, New York, pp 63–93CrossRefGoogle Scholar
  130. Romão W, Tose LV, Vaz BG, Sama SG, Lobinski R, Giusti P, Carrier H, Bouyssiere B (2016) Petroleomics by direct analysis in real time-mass spectrometry. J Am Soc Mass Spectrom 27:182–185PubMedCrossRefGoogle Scholar
  131. Rosell-Melé A, Carter JF, Maxwell JR (1996) High-performance liquid chromatography–mass spectrometry of porphyrins by using an atmospheric pressure interface. J Am Soc Mass Spectrom 7:965–971PubMedCrossRefGoogle Scholar
  132. Rossini FD, Mair BJ (1951) Composition of petroleum. In: Progress in petroleum technology, vol 5. American Chemical Society, Washington, DC, pp 334–352CrossRefGoogle Scholar
  133. Rossini FD, Mair BJ (1959) The work of the API research project 6 on the composition of petroleum. In: Proceedings of 5th world petroleum congress, pp 223–245Google Scholar
  134. Ruiz-Guerrero R, Vendeuvre C, Thiébaut D, Bertoncini F, Espinat D (2006) Comparison of comprehensive two-dimensional gas chromatography coupled with sulfur-chemiluminescence detector to standard methods for speciation of sulfur-containing compounds in middle distillates. J Chromatogr Sci 44:566–573PubMedCrossRefGoogle Scholar
  135. Rummel JL, McKenna AM, Marshall AG, Eyler JR, Powel DH (2010) The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh-resolution mass analysis. Rapid Commun Mass Spectrom 24:784–790PubMedCrossRefGoogle Scholar
  136. Savory JJ, Kaiser NK, McKenna AM, Xian F, Blakney GT, Rodgers RP, Hendrickson CL, Marshall AG (2011) Parts-per-billion Fourier transform ion cyclotron resonance mass measurement accuracy with a “walking” calibration equation. Anal Chem 83:1732–1736PubMedCrossRefGoogle Scholar
  137. Schabron JF, Rovani JF, Sanderson MM (2010) Asphaltene determinator method for automated on-column precipitation and redissolution of pericondensed aromatic asphaltene components. Energy Fuels 24:5984–5996CrossRefGoogle Scholar
  138. Schaub TM, Rodgers RP, Marshall AG, Qian K, Green LA, Olmstead WN (2005) Speciation of aromatic compounds in petroleum refinery streams by continuous flow field desorption ionization FT-ICR mass spectrometry. Energy Fuels 19:1566–1573CrossRefGoogle Scholar
  139. Schmidt F, Koch BP, Witt M, Hinrichs K-U (2014) Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction. Geochim Cosmochim Acta 141:83–96CrossRefGoogle Scholar
  140. Schuler B, Meyer G, Peña D, Mullins OC, Gross L (2015) Unraveling the molecular structures of asphaltenes by atomic force microscopy. J Am Chem Soc 137:9870–9876PubMedCrossRefGoogle Scholar
  141. Seeley JV, Seeley SK (2013) Multidimensional gas chromatography: fundamental advances and new applications. Anal Chem 85:557–578PubMedCrossRefGoogle Scholar
  142. Seidel M, Beck M, Riedel T, Waska H, Suryaputra IGNA, Schnetger B, Niggemann J, Simon M, Dittmar T (2014) Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank. Geochim Cosmochim Acta 140:418–434CrossRefGoogle Scholar
  143. Seidel M, Kleindienst S, Dittmar T, Joye SB, Medeiros PM (2016) Biodegradation of crude oil and dispersants in deep seawater from the Gulf of Mexico: insights from ultra-high resolution mass spectrometry. Deep Sea Res Part II Top Stud Oceanogr 129:108–118CrossRefGoogle Scholar
  144. Silva RC, Radović JR, Ahmed F, Ehrmann U, Brown M, Carbognani Ortega L, Larter S, Pereira-Almao P, Oldenburg TBP (2016) Characterization of acid-soluble oxidized asphaltenes by Fourier transform ion cyclotron resonance mass spectrometry: insights on oxycracking processes and asphaltene structural features. Energy Fuels 30:171–179CrossRefGoogle Scholar
  145. Sim A, Cho Y, Kim D, Witt M, Birdwell JE, Kim BJ, Kim S (2014) Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry. Fuel 140:717–723CrossRefGoogle Scholar
  146. Simon S, Nordgård E, Bruheim P, Sjöblom J (2008) Determination of C80 tetra-acid content in calcium naphthenate deposits. J Chromatogr A 1200:136–143PubMedCrossRefGoogle Scholar
  147. Sleighter RL, Hatcher PG (2008) Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 110:140–152CrossRefGoogle Scholar
  148. Smith BE, Rowland SJ (2008) A derivatisation and liquid chromatography/electrospray ionisation multistage mass spectrometry method for the characterisation of naphthenic acids. Rapid Commun Mass Spectrom 22:3909–3927PubMedCrossRefGoogle Scholar
  149. Sundararaman P (1985) High-performance liquid chromatography of vanadyl porphyrins. Anal Chem 57:2204–2206CrossRefGoogle Scholar
  150. Sutton PA, Rowland SJ (2012) High temperature gas chromatography-time-of-flight-mass spectrometry (HTGC-ToF-MS) for high-boiling compounds. J Chromatogr A 1243:68–90CrossRefGoogle Scholar
  151. Talbot HM, Rohmer M, Farrimond P (2007) Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 21:880–892PubMedCrossRefGoogle Scholar
  152. Taylor LT (2010) Supercritical fluid chromatography. Anal Chem 82:4925–4935PubMedCrossRefGoogle Scholar
  153. Thiebaut DRP, Robert EC (1999) Group-type separation and simulated distillation: a niche for SFC. Analusis 27:681–690CrossRefGoogle Scholar
  154. Treibs A (1936) Chlorophyll and hemin derivatives in organic mineral substances. Angew Chem 49:682–686CrossRefGoogle Scholar
  155. Vaughan PP, Wilson T, Kamerman R, Hagy ME, McKenna A, Chen H, Jeffrey WH (2016) Photochemical changes in water accommodated fractions of MC252 and surrogate oil created during solar exposure as determined by FT-ICR MS. Mar Pollut Bull 104:262–268PubMedCrossRefGoogle Scholar
  156. Vaz BG, Silva RC, Klitzke CF, Simas RC, Lopes Nascimento HD, Pereira RCL, Garcia DF, Eberlin MN, Azevedo DA (2013) Assessing biodegradation in the Llanos Orientales crude oils by electrospray ionization ultrahigh-resolution and accuracy Fourier transform mass spectrometry and chemometric analysis. Energy Fuels 27:1277–1284CrossRefGoogle Scholar
  157. Walters CC (2016) The origin of petroleum. In: Hsu CS, Robinson PR (eds) Springer handbook of petroleum technology. Springer, ChamGoogle Scholar
  158. Walters CC, Freund H, Kelemen SR, Braun AL, Wenger LM (2009) Predicting oil quality – simulating reservoir alteration processes. In: 2009 Napa AAPG Hedberg research conference on basin and petroleum systems modelingGoogle Scholar
  159. Walters CC, Qian K, Wu C, Mennito AS, Wei Z (2011) Proto-solid bitumen in petroleum altered by thermochemical sulfate reduction. Org Geochem 42:999–1006CrossRefGoogle Scholar
  160. Walters CC, Wang FC, Qian K, Wu C, Mennito AS, Wei Z (2015) Petroleum alteration by thermochemical sulfate reduction – a comprehensive molecular study of aromatic hydrocarbons and polar compounds. Geochim Cosmochim Acta 153:37–71CrossRefGoogle Scholar
  161. Wang FC (2017) Comprehensive three-dimensional gas chromatography mass spectrometry separation of diesel. J Chromatogr A 1489:126–133PubMedCrossRefGoogle Scholar
  162. Wang FC, Robbins WK, Sanzo FP, McElroy FC (2003) Speciation of sulfur-containing compounds in diesel by comprehensive two-dimensional gas chromatography. J Chromatogr Sci 41:519–523PubMedCrossRefGoogle Scholar
  163. Wang B, Wan Y, Gao Y, Yang M, Hu J (2013) Determination and characterization of oxy-naphthenic acids in oilfield wastewater. Environ Sci Technol 47:9545–9554PubMedCrossRefGoogle Scholar
  164. Wang W, Liu Y, Liu Z, Tian S (2016) Detailed chemical composition of straight-run vacuum gas oil and its distillates as a function of the atmospheric equivalent boiling point. Energy Fuels 30:968–974Google Scholar
  165. Wang FC, Qian K, Edwards KF (2018) Integrated hydrocarbon analysis. US Patent 9417220Google Scholar
  166. Woltering M, Tulipani S, Boreham CJ, Walshe J, Schwark L, Grice K (2016) Simultaneous quantitative analysis of Ni, VO, Cu, Zn and Mn geoporphyrins by liquid chromatography – high resolution multistage mass spectrometry: method development and validation. Chem Geol 441:81–91CrossRefGoogle Scholar
  167. Wu C, Qian K, Nefliu M, Cooks RG (2010) Ambient analysis of saturated hydrocarbons using discharge-induced oxidation in desorption electrospray ionization. J Am Soc Mass Spectrom 21:261–267PubMedCrossRefGoogle Scholar
  168. Wu C, Walters CC, Qian K (2015) Analysis of hydrocarbon liquid and solid samples. US Patent 9053296 B2Google Scholar
  169. Xian F, Hendrickson CL, Marshall AG (2012) High resolution mass spectrometry. Anal Chem 84:708–719PubMedCrossRefGoogle Scholar
  170. Yue S, Ramsay BA, Wang J, Ramsay JA (2016) Biodegradation and detoxification of naphthenic acids in oil sands process affected waters. Sci Total Environ 572:273–279PubMedCrossRefGoogle Scholar
  171. Zhang Y, Xu C, Shi Q, Zhao S, Chung KH, Hou D (2010) Tracking neutral nitrogen compounds in subfractions of crude oil obtained by liquid chromatography separation using negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 24:6321–6326CrossRefGoogle Scholar
  172. Zhu R, Shen B, Liu J, Chen X (2012) A kinetic model for catalytic cracking of vacuum gas oil using a structure-oriented lumping method. Energy Sources A 34:2066–2072CrossRefGoogle Scholar
  173. Zhu C, Lipp JS, Wörmer L, Becker KW, Schröder J, Hinrichs K-U (2013) Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol. Org Geochem 65:53–62CrossRefGoogle Scholar
  174. Zhurov KO, Kozhinov AN, Tsybin YO (2013) Evaluation of high-field Orbitrap Fourier transform mass spectrometer for petroleomics. Energy Fuels 27:2974–2983CrossRefGoogle Scholar
  175. Zubarev RA, Makarov A (2013) Orbitrap mass spectromery. Anal Chem 85:5288–5296PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Corporate Strategic ResearchExxonMobil Research & Engineering CompanyAnnandaleUSA

Personalised recommendations