Factors Controlling Carbon and Hydrogen Isotope Fractionation During Biosynthesis of Lipids by Phototrophic Organisms

  • Nikolai PedentchoukEmail author
  • Youping Zhou
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The analysis of carbon and hydrogen stable isotope ratios of lipids from natural products is an integral component of research in Earth sciences. The isotopic composition of lipids from algae and higher plants can be linked with various environmental parameters, which makes lipid biomarkers a rich source of information about biological, chemical, and physical processes in the environment. This chapter reviews the key external and internal factors that affect C and H isotopic fractionation during biosynthesis of lipids. Significant advances need to be made to increase our level of understanding of the processes that control fractionation in different lipid groups and within individual lipid molecules.


  1. Ballentine DC, Macko SA, Turekian VC (1998) Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants: implications for biomass burning. Chem Geol 152:151–161CrossRefGoogle Scholar
  2. Belt ST, Müller J (2013) The Arctic Sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quaternary Sci Rev 79:9–25CrossRefGoogle Scholar
  3. Belt ST, Smik L, Brown TA et al (2016) Source identification and distribution reveals the potential of the geochemical Antarctic Sea ice proxy IPSO25. Nat Commun 7:12655PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bi X, Sheng G, Liu X, Li C, Fu J (2005) Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. Org Geochem 36:1405–1417CrossRefGoogle Scholar
  5. Bidigare R, Fluegge A, Freeman KH et al (1997) Consistent fractionation of13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Global Biogeochem C 11:279–292CrossRefGoogle Scholar
  6. Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Glob Chang Biol 7:127–145CrossRefGoogle Scholar
  7. Brassell SC, Eglinton G, Maxwell JR et al (1978) Natural background of alkanes in the aquatic environment. In: Hutzinger O, van Lelyveld LH, Zoeteman BCJ (eds) Aquatic pollutants, transformation and biological effects. Pergamon Press, Oxford, pp 69–86CrossRefGoogle Scholar
  8. Brassell SC, Eglinton G, Marlowe IT et al (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133CrossRefGoogle Scholar
  9. Broadmeadow MSJ, Griffiths H (1993) Carbon isotope discrimination and the coupling of CO2 fluxes within forest canopies. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotope and plant carbon-water relationships. Academic, San Diego, pp 109–129CrossRefGoogle Scholar
  10. Cernusak LA, Ubierna N, Winter K et al (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200:950–965PubMedCrossRefGoogle Scholar
  11. Chikaraishi Y (2006) Carbon and hydrogen isotopic composition of sterols in natural marine brown and red macroalgae and associated shellfish. Org Geochem 37:428–436CrossRefGoogle Scholar
  12. Chikaraishi Y (2014)13C/12C signatures in plants and algae. In: Treatise on geochemistry, 2nd edn. Elsevier, London, pp 95–123CrossRefGoogle Scholar
  13. Chikaraishi J, Naraoka H (2003) Compound-specific δD–δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63:361–371PubMedCrossRefGoogle Scholar
  14. Chikaraishi Y, Naraoka H (2007) δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants. Org Geochem 38:198–215CrossRefGoogle Scholar
  15. Chikaraishi Y, Naraoka H, Poulson SR (2004a) Carbon and hydrogen isotopic fractionation during lipid biosynthesis in a higher plant (Cryptomeria japonica). Phytochemistry 65:323–330PubMedCrossRefGoogle Scholar
  16. Chikaraishi Y, Naraoka H, Poulson SR (2004b) Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry 65:1369–1381PubMedCrossRefGoogle Scholar
  17. Chikaraishi Y, Suzuki Y, Naraoka H (2004c) Hydrogen isotopic fractionations during desaturation and elongation associated with polyunsaturated fatty acid biosynthesis in marine macroalgae. Phytochemistry 65:2293–2300PubMedCrossRefGoogle Scholar
  18. Chikaraishi Y, Matsumoto K, Ogawa NO et al (2005) Hydrogen, carbon and nitrogen isotopic fractionations during chlorophyll biosynthesis in C3 higher plants. Phytochemistry 66:911–920PubMedCrossRefGoogle Scholar
  19. Chikaraishi Y, Tanaka R, Tanaka A et al (2009) Fractionation of hydrogen isotopes during phytol biosynthesis. Org Geochem 40:569–573CrossRefGoogle Scholar
  20. Chivall D, M’Boule D, Sinke-Schoen D et al (2014) The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae. Geochim Cosmochim Acta 140:381–390CrossRefGoogle Scholar
  21. Collister JW, Rieley G, Stern B et al (1994) Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org Geochem 21:619–627CrossRefGoogle Scholar
  22. Conte MH, Weber JC, Carlson PJ, Flanagan LB (2003) Molecular and carbon isotopic composition of leaf wax in vegetation and aerosols in a northern prairie ecosystem. Oecologia 135:67–77Google Scholar
  23. Craig H (1954) Carbon-13 in plants and the relationships between carbon-13 and carbon-14 variations in nature. J Geol 62:115–149CrossRefGoogle Scholar
  24. Cranwell PA (1982) Lipids of aquatic sediments from Upton broad, a small productive lake. Prog Lipid Res 21:271–308PubMedCrossRefGoogle Scholar
  25. Daniels WC, Russell JM, Giblin AE et al (2017) Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra. Geochim Cosmochim Acta 213:216–236CrossRefGoogle Scholar
  26. Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental geochemistry, vol 1. Elsevier, New York/Amsterdam, pp 239–406Google Scholar
  27. Diefendorf AF, Freimuth EJ (2017) Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review. Org Geochem 103:1–21CrossRefGoogle Scholar
  28. Diefendorf AF, Mueller KE, Wing SL et al (2010) Global patterns in leaf13C discrimination and implications for studies of past and future climate. P Natl Acad Sci USA 107:5738–5743CrossRefGoogle Scholar
  29. Diefendorf AF, Freeman KH, Wing SL et al (2011) Production of n-alkyl lipids in living plants and implications for the geologic past. Geochim Cosmochim Acta 75:7472–7485CrossRefGoogle Scholar
  30. Diefendorf AF, Freeman KH, Wing SL (2014) A comparison of terpenoid and leaf fossil vegetation proxies in Paleocene and Eocene Bighorn Basin sediments. Org Geochem 71:30–42Google Scholar
  31. Diefendorf AF, Freeman KH, Wing SL, Currano ED, Mueller KE (2015a) Paleogene plants fractionated carbon isotopes similar to modern plants. Earth Planet Sc Lett 429:33–44CrossRefGoogle Scholar
  32. Diefendorf AF, Leslie AB, Wing SL (2015b) Leaf wax composition and carbon isotopes vary among major conifer groups. Geochim Cosmochim Acta 170:145–156CrossRefGoogle Scholar
  33. Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335PubMedCrossRefPubMedCentralGoogle Scholar
  34. Eglinton G, Gonzalez AG, Hamilton RJ et al (1962) Hydrocarbon constituents of the wax coatings of plant waxes: a taxonomic survey. Phytochemistry 1:89–102CrossRefGoogle Scholar
  35. Ehleringer JR, Lin ZF, Field CB, Sun GC, Kuo CY (1987) Leaf carbon isotope ratios of plants from a subtropical monsoon forest. Oecologia 72:109–114PubMedCrossRefPubMedCentralGoogle Scholar
  36. Eley Y, Dawson L, Black S et al (2014) Understanding2H/1H systematics of leaf wax n-alkanes in coastal plants at Stiffkey saltmarsh, Norfolk, UK. Geochim Cosmochim Acta 128:13–28CrossRefGoogle Scholar
  37. Eley Y, Dawson L, Pedentchouk N (2016) Investigating the carbon isotope composition and leaf wax n-alkane concentration of C3 and C4 plants in Stiffkey saltmarsh, Norfolk, UK. Org Geochem 96:28–42CrossRefGoogle Scholar
  38. Englebrecht AC, Sachs JP (2005) Determination of sediment provenance at drift sites using hydrogen isotopes and unsaturation ratios in alkenones. Geochim Cosmochim Acta 69:4253–4265CrossRefGoogle Scholar
  39. Estep MF, Hoering TC (1980) Biogeochemistry of the stable hydrogen isotopes. Geochim Cosmochim Acta 44:1197–1206CrossRefGoogle Scholar
  40. Evershed RP, Bull ID, Corr LT et al (2007) Compound-specific stable isotope analysis in ecology and paleoecology. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Malden, pp 480–540CrossRefGoogle Scholar
  41. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  42. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phys 40:503–537CrossRefGoogle Scholar
  43. Feakins SJ, Sessions AL (2010) Controls on the D/H ratios of plant leaf waxes in an arid ecosystem. Geochim Cosmochim Acta 74:2128–2141CrossRefGoogle Scholar
  44. Feakins SJ, Bentley LP, Salinas N et al (2016) Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. Geochim Cosmochim Acta 182:155–172CrossRefGoogle Scholar
  45. Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749CrossRefGoogle Scholar
  46. Fogel ML, Cifuentes LA (1993) Isotope fractionation during primary production. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 73–98CrossRefGoogle Scholar
  47. Freeman KH, Pancost RD (2014) Biomarkers for terrestrial plants and climate. In: Treatise on geochemistry, 2nd edn. Elsevier, London, pp 79–94Google Scholar
  48. Freeman KH, Hayes JM, Trendel JM et al (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:254–256PubMedCrossRefGoogle Scholar
  49. Freimuth EJ, Diefendorf AF, Lowell TV (2017) Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords. Geochim Cosmochim Acta 206:166–183CrossRefGoogle Scholar
  50. Gamarra B, Sachse D, Kahmen A (2016) Effects of leaf water evaporative2H-enrichment and biosynthetic fractionation on leaf wax n-alkane δ2H values in C3 and C4 grasses. Plant Cell Environ 39:2390–2403PubMedCrossRefGoogle Scholar
  51. Gao L, Edwards EJ, Zeng Y, Huang Y (2014) Major evolutionary trends in hydrogen isotope fractionation of vascular plant leaf waxes. PLoS One 9:e112610PubMedPubMedCentralCrossRefGoogle Scholar
  52. Grice K, Lu H, Zhou Y et al (2008) Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso- (3-methyl) and iso- (2-methyl) alkanes in tobacco leaves. Phytochemistry 69:2807–2814PubMedCrossRefGoogle Scholar
  53. Hayes JM (1993) Factors controlling13C contents of sedimentary organic compounds: principles and evidence. Mar Geol 113:111–125CrossRefGoogle Scholar
  54. Hayes JM (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, Reviews in Mineralogy & Geochemistry, vol 43. The Mineralogical Society of America, Washington, DC, pp 225–277Google Scholar
  55. Hayes JM, Freeman KH, Popp BN et al (1990) Compound-specific isotopic analysis: a novel tool for the reconstruction of ancient biogeochemical processes. In: Durand B, Behar F (eds) Advances in organic geochemistry. Pergamon, Oxford, pp 1115–1128Google Scholar
  56. Hobbie E, Werner RA (2004) Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol 161:371–385CrossRefGoogle Scholar
  57. Hou J, D’Andrea WJ, MacDonald D, Huang Y (2007) Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around blood pond, Massachusetts (USA). Org Geochem 38:977–984CrossRefGoogle Scholar
  58. Huang Y, Shuman B, Wang Y et al (2002) Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late quaternary climate variations. Geology 30:1103–1106CrossRefGoogle Scholar
  59. Kahmen A, Schefuß E, Sachse D (2013a) Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants I: experimental evidence and mechanistic insights. Geochim Cosmochim Acta 111:39–49CrossRefGoogle Scholar
  60. Kahmen A, Hoffmann B, Schefuß E et al (2013b) Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants II: observational evidence and global implications. Geochim Cosmochim Acta 111:50–63CrossRefGoogle Scholar
  61. Kolattukudy PE (1976) The chemistry and biochemistry of natural waxes. Elsevier, AmsterdamGoogle Scholar
  62. Ladd SN, Sachs JP (2012) Inverse relationship between salinity and n-alkane δD values in the mangrove Avicennia marina. Org Geochem 48:25–36CrossRefGoogle Scholar
  63. Ladd SN, Sachs JP (2013) Positive correlation between salinity and n-alkane δ13C values in the mangrove Avicennia marina. Org Geochem 64:1–8CrossRefGoogle Scholar
  64. Ladd SN, Sachs JP (2017)2H/1H fractionation in lipids of the mangrove Bruguiera gymnorhiza increases with salinity in marine lakes of Palau. Geochim Cosmochim Acta 204:300–312CrossRefGoogle Scholar
  65. Laws EA, Popp BN, Bidigare RR et al (2001) Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae. Geochem Geophys Geosys 2.
  66. Liu J, Liu W, An Z, Yang H (2016) Different hydrogen isotope fractionations during lipid formation in higher plants: implications for paleohydrology reconstruction at a global scale. Sci Rep-UK 6:19711CrossRefGoogle Scholar
  67. Lloyd J, Farquhar GD (1994)13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99:201–215PubMedCrossRefGoogle Scholar
  68. Lockheart MJ, Van Bergen PF, Evershed RP (1997) Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms: implications for the study of higher land plant-derived sedimentary organic matter. Org Geochem 26:137–153CrossRefGoogle Scholar
  69. Luo Y-H, Steinberg L, Suda S, Kumazawa S, Mitsui A (1991) Extremely low D/H ratios of photoproduced hydrogen by cyanobacteria. Plant Cell Physiol 32:897–900Google Scholar
  70. M’boule D, Chivall D, Sinke-Schoen D et al (2014) Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae. Geochim Cosmochim Acta 130:126–135CrossRefGoogle Scholar
  71. Maloney AE, Shinneman ALC, Hemeon K et al (2016) Exploring lipid2H/1H fractionation mechanisms in response to salinity with continuous cultures of the diatom Thalassiosira pseudonana. Org Geochem 101:154–165CrossRefGoogle Scholar
  72. Marlowe IT, Brassell SC, Eglinton G et al (1984) Long chain unsaturated ketones and esters in living algae and marine sediments. Org Geochem 6:135–141CrossRefGoogle Scholar
  73. McInerney FA, Wing SL (2011) The Paleocene-Eocene Thermal Maximum: A Perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu Rev Earth Pl Sc 39:489–516Google Scholar
  74. McInerney FA, Helliker BR, Freeman KH (2011) Hydrogen isotope ratios of leaf wax n-alkanes in grasses are insensitive to transpiration. Geochim Cosmochim Acta 75:541–554CrossRefGoogle Scholar
  75. Mead R, Xu Y, Chong J, Jaffè R (2005) Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org Geochem 36:363–370CrossRefGoogle Scholar
  76. Moldowan JM, Dahl J, Huizinga BJ et al (1994) The molecular fossil record of oleanane and its relation to angiosperms. Science 265:768–771PubMedCrossRefGoogle Scholar
  77. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sc Lett 22:169–176CrossRefGoogle Scholar
  78. Newberry SL, Kahmen A, Dennis P et al (2015) n-alkane biosynthetic hydrogen isotope fractionation is not constant throughout the growing season in the riparian tree Salix viminalis. Geochim Cosmochim Acta 165:75–85CrossRefGoogle Scholar
  79. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567CrossRefGoogle Scholar
  80. Pagani M (2014) Biomarker-based inferences of past climate: the alkenone pCO2 proxy. In: Treatise on geochemistry, 2nd edn. Elsevier, London, pp 361–378CrossRefGoogle Scholar
  81. Pagani M, Pedentchouk N, Huber M et al (2006) Arctic’s hydrology during global warming at the Palaeocene-Eocene thermal maximum. Nature 442:671–675PubMedCrossRefGoogle Scholar
  82. Pahnke K, Sachs JP, Keigwin LD, Timmermann A, Xie S-P (2007) Eastern tropical Pacific hydrological changes during the past 27,000 years from D/H ratios in alkenones. Paleoceanography 22.
  83. Pancost R, Pagani M (2006) Controls on the carbon isotopic composition of lipids in marine environments. In: Volkman J (ed) Marine organic matter: biomarkers, isotopes and DNA. Springer, Berlin/Heidelberg, pp 209–249CrossRefGoogle Scholar
  84. Pancost RD, Freeman KH, Wakeham SG (1999) Controls on the carbon-isotope compositions of compounds in Peru surface waters. Org Geochem 30:319–340CrossRefGoogle Scholar
  85. Pataki DE, Ehleringer JR, Flanagan LB, Yakir D (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem Cycles 17.
  86. Pedentchouk N, Turich C (2017) Carbon and hydrogen isotopic compositions of n-alkanes as a tool in petroleum exploration. In: Lawson M, Formolo MJ, Eiler JM (eds) From source to seep: geochemical applications in hydrocarbon systems, Geological society, special publications, vol 468. Geological Society, London. Scholar
  87. Peters KE, Walters CC, Moldowan JM (2005a) The biomarker guide, volume 1, biomarkers and isotopes in environment and human history, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  88. Peters KE, Walters CC, Moldowan JM (2005b) The biomarker guide: volume 2, biomarkers and isotopes in petroleum exploration and earth history, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  89. Rach O, Brauer A, Wilkes H, Sachse D (2014) Delayed hydrological response to Greenland cooling at the onset of the younger Dryas in western Europe. Nat Geosci 7:109–112CrossRefGoogle Scholar
  90. Rau G, Takahashi T, Des Marais D, Repeta D, Martin J (1992) The relationship between d13C of organic matter and [CO2aq] in ocean surface water: data from a JGOFS site in the northeastern Atlantic Ocean and a model. Geochim Cosmochim Acta 56:1413–1419PubMedCrossRefGoogle Scholar
  91. Robinson N, Eglinton G, Brassell SC, Cranwell PA (1984) Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols. Nature 308:439–442CrossRefGoogle Scholar
  92. Rowland SJ, Robson JN (1990) The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in recent sediments and biota – a review. Mar Environ Res 30:191–216CrossRefGoogle Scholar
  93. Sachs JP (2014) Hydrogen isotope signatures in the lipids of phytoplankton. In: Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 79–94CrossRefGoogle Scholar
  94. Sachs JP, Schwab VF (2011) Hydrogen isotopes in dinosterol from the Chesapeake Bay estuary. Geochim Cosmochim Acta 75:444–459CrossRefGoogle Scholar
  95. Sachs JP, Maloney AE, Gregersen J et al (2016) Effect of salinity on2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi. Geochim Cosmochim Acta 189:96–109CrossRefGoogle Scholar
  96. Sachs JP, Maloney AE, Gregersen J (2017) Effect of light on2H/1H fractionation in lipids from continuous cultures of the diatom Thalassiosira pseudonana. Geochim Cosmochim Acta 209:204–215CrossRefGoogle Scholar
  97. Sachse D, Sachs JP (2008) Inverse relationship between D/H fractionation in cyanobacterial lipids and salinity in Christmas Island saline ponds. Geochim Cosmochim Acta 72:793–806CrossRefGoogle Scholar
  98. Sachse D, Radke J, Gleixner G (2004) Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochim Cosmochim Acta 68:4877–4889CrossRefGoogle Scholar
  99. Sachse D, Radke J, Gleixner G (2006) δD values of individual n-alkanes from terrestrial plants along a climatic gradient – implications for the sedimentary biomarker record. Org Geochem 37:469–483CrossRefGoogle Scholar
  100. Sachse D, Kahmen A, Gleixner G (2009) Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvatica and Acer pseudoplatanus). Org Geochem 40:732–742CrossRefGoogle Scholar
  101. Sachse D, Gleixner G, Wilkes H et al (2010) Leaf wax n-alkane δD values of field-grown barley reflect leaf water δD values at the time of leaf formation. Geochim Cosmochim Acta 74:6741–6750CrossRefGoogle Scholar
  102. Sachse D, Billault I, Bowen GJ et al (2012) Molecular palaeohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Pl Sc 40:221–249CrossRefGoogle Scholar
  103. Sachse D, Dawson TE, Kahmen A (2015) Seasonal variation of leaf wax n-alkane production and δ2H values from the evergreen oak tree, Quercus agrifolia. Isot Environ Healt S 51:124–142CrossRefGoogle Scholar
  104. Sakata S, Hayes JM, McTaggart AR, Evans RA et al (1997) Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: relevance for interpretation of biomarker records. Geochim Cosmochim Acta 61:5379–5389PubMedCrossRefGoogle Scholar
  105. Sauer PE, Eglinton TI, Hayes JM et al (2001) Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim Cosmochim Acta 65:213–222CrossRefGoogle Scholar
  106. Schmidt H-L, Werner RA, Eisenreich W (2003) Systematics of2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways. Phytochem Rev 2:61–85CrossRefGoogle Scholar
  107. Scholle PA, Arthur MA (1980) Carbon isotope fluctuations in cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bull 64:67–87Google Scholar
  108. Schouten S, Klein Breteler WCM, Blokker P et al (1998) Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record. Geochim Cosmochim Acta 62:1397–1406CrossRefGoogle Scholar
  109. Schouten S, Ossebaar J, Schreiber K et al (2006) The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica. Biogeosciences 3:113–119CrossRefGoogle Scholar
  110. Schouten S, Woltering M, Rijpstra WIC et al (2007) The Paleocene–Eocene carbon isotope excursion in higher plant organic matter: differential fractionation of angiosperms and conifers in the Arctic. Earth Planet Lett 258:581–592CrossRefGoogle Scholar
  111. Schubert BA, Jahren AH (2012) The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim Cosmochim Acta 96:29–43CrossRefGoogle Scholar
  112. Schwab VF, Sachs JP (2009) The measurement of D/H ratio in alkenones and their isotopic heterogeneity. Org Geochem 40:111–118CrossRefGoogle Scholar
  113. Schwab VRF, Sachs JP (2011) Hydrogen isotopes in individual alkenones from the Chesapeake Bay estuary. Geochim Cosmochim Acta 75:7552–7565CrossRefGoogle Scholar
  114. Sessions AL (2006) Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora. Geochim Cosmochim Acta 70:2153–2162CrossRefGoogle Scholar
  115. Sessions A (2016) Factors controlling the deuterium contents of sedimentary hydrocarbons. Org Geochem 96:43–64CrossRefGoogle Scholar
  116. Sessions AL, Burgoyne TW, Schimmelmann A (1999) Fractionation of hydrogen isotopes in lipid biosynthesis. Org Geochem 30:1193–1200CrossRefGoogle Scholar
  117. Shanahan TM, Hughen KA, Ampel L et al (2013) Environmental controls on the 2H/1H values of terrestrial leaf waxes in the eastern Canadian Arctic. Geochim Cosmochim Acta 119:286–301CrossRefGoogle Scholar
  118. Smith BN, Epstein S (1970) Biogeochemistry of the stable isotopes of hydrogen and carbon in salt marsh biota. Plant Physiol 46:738–742PubMedPubMedCentralCrossRefGoogle Scholar
  119. Tcherkez G, Mahé A, Hodges M (2011)12C/13C fractionations in plant primary metabolism. Trends Plant Sci 16:499–506PubMedGoogle Scholar
  120. Tipple BJ, Pagani M (2007) The early origins of terrestrial C4 photosynthesis. Annu Rev Earth Pl Sc 35:435–461CrossRefGoogle Scholar
  121. Tipple BJ, Pagani M (2010) A 35 Myr north American leaf-wax compound-specific carbon and hydrogen isotope record: implications for C4 grasslands and hydrologic cycle dynamics. Earth Planet Sc Lett 299:250–262CrossRefGoogle Scholar
  122. Tipple BJ, Pagani M (2013) Environmental control on eastern broadleaf forest species’ leaf wax distributions and D/H ratios. Geochim Cosmochim Acta 111:64–77CrossRefGoogle Scholar
  123. Tipple BJ, Meyers SR, Pagani M (2010) Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography 25:PA3202CrossRefGoogle Scholar
  124. Tipple BJ, Berke MA, Doman CE et al (2013) Leaf-wax n-alkanes record the plant-water environment at leaf flush. P Natl Acad Sci USA 110:2659–2664CrossRefGoogle Scholar
  125. Tipple BJ, Berke MA, Hambach B et al (2015) Predicting leaf wax n-alkane2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model. Plant Cell Environ 38:1035–1047PubMedCrossRefGoogle Scholar
  126. van der Meer MTJ, Benthien A, French KL et al (2015) Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi. Geochim Cosmochim Acta 160:16–24CrossRefGoogle Scholar
  127. van Dongen BE, Schouten S, Sinninghe Damsté JS (2002) Carbon isotope variability in monosaccharides and lipids of aquatic algae and terrestrial plants. Mar Ecol Prog Ser 232:83–92CrossRefGoogle Scholar
  128. Versteegh GJM, Schefuß E, Dupont L et al (2004) Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems. Geochim Cosmochim Acta 68:411–422CrossRefGoogle Scholar
  129. Volkman JK, Eglinton G, Corner EDS et al (1980) Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 19:2619–2622CrossRefGoogle Scholar
  130. Volkman JK, Barrett SM, Dunstan GA (1994) C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Org Geochem 21:407–414CrossRefGoogle Scholar
  131. White JWC (1988) Stable hydrogen isotope ratios in plants: a review of current theory and some potential applications. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, New York, pp 142–162Google Scholar
  132. Wickman FE (1952) Variations in the relative abundance of the carbon isotopes in plants. Geochim Cosmochim Acta 2:243–254CrossRefGoogle Scholar
  133. Wolhowe MD, Prahl FG, Probert I et al (2009) Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes. Biogeosciences 6:1681–1694CrossRefGoogle Scholar
  134. Zhang Z, Sachs JP (2007) Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species. Org Geochem 38:582–608CrossRefGoogle Scholar
  135. Zhang Z, Sachs JP, Marchetti A (2009) Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects. Org Geochem 40:428–439CrossRefGoogle Scholar
  136. Zhou Y, Grice K, Stuart-Williams H et al (2010) Biosynthetic origin of the saw-toothed profile in δ13C and δ2Η of n-alkanes and systematic isotopic differences between n-, iso- and anteiso-alkanes in leaf waxes of land plants. Phytochemistry 71:388–403PubMedCrossRefGoogle Scholar
  137. Zhou Y, Stuart-Williams H, Grice K et al (2015) Allocate carbon for a reason: priorities are reflected in the13C/12C ratios of plant lipids synthesized via three independent biosynthetic pathways. Phytochemistry 111:14–20PubMedCrossRefGoogle Scholar
  138. Zhou Y, Grice K, Stuart-Williams H et al (2016) Hydrogen isotopic differences between C3 and C4 land plant lipids: consequences of compartmentation in C4 photosynthetic chemistry and C3 photorespiration. Plant Cell Environ 39:2676–2690PubMedCrossRefGoogle Scholar
  139. Ziegler H (1988) Hydrogen isotope fractionation in plant tissues. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, New York, pp 105–123Google Scholar
  140. Zimmerman JK, Ehleringer JR (1990) Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Catasetum viridiflavum. Oecologia 83:247–249Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental SciencesUniversity of East AngliaNorwichUK
  2. 2.School of Chemistry & Chemical EngineeringShaanxi University of Science & TechnologyXi’anChina
  3. 3.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations