Advertisement

History of Life from the Hydrocarbon Fossil Record

  • Clifford C. Walters
  • Kenneth E. Peters
  • J. Michael Moldowan
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Certain lipids and biopolymers retain their original carbon backbone structure through sedimentary diagenesis and catagenesis and can be assigned to a specific biological origin. These “taxon-specific biomarkers” (TSBs) can serve as chemical fossils that trace the evolution of life. TSBs in Precambrian rocks reveal the early evolution of archaea, cyanobacteria, and eukarya and the development of atmospheric free oxygen. However, improved criteria for assessing syngeneticity have questioned their proposed earliest occurrence in Archean rocks. Steroidal TSBs document the changing assemblages of marine phytoplankton from Neoproterozoic organic-walled acritarchs to present-day predominance of diatoms. Terpanoid TSBs reveal the evolution of higher land plants. TSBs used in conjunction with isotopic analysis can identify the taxa of enigmatic fossils, provide important clues to the causes of mass extinctions, and describe the global changes in biotic diversity and Earth’s conditions as the biosphere recovers from them. Biomarkers record the evolutionary history of life on Earth and, perhaps, other planets.

References

  1. Alleon J, Bernard S, Le Guillou C, Daval D, Skouri-Panet F, Pont S, Delbes L, Robert F (2016) Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis. Chem Geol 437:98–108CrossRefGoogle Scholar
  2. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean Era of Australia. Nature 441:714–718PubMedCrossRefPubMedCentralGoogle Scholar
  3. Allwood AC, Walter MR, Burch IW, Kamber BS (2007) 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Res 158:198–227CrossRefGoogle Scholar
  4. Altermann W, Kazmierczak J (2003) Archean microfossils: a reappraisal of early life on Earth. Res Microbiol 154:611–617PubMedCrossRefPubMedCentralGoogle Scholar
  5. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the Great Oxidation Event? Science 317:1903–1906PubMedCrossRefPubMedCentralGoogle Scholar
  6. Antcliffe JB (2013) Questioning the evidence of organic compounds called sponge biomarkers. Palaeontology 56:917–925Google Scholar
  7. Armstroff A, Wilkes H, Schwarzbauer J, Littke R, Horsfield B (2006) Aromatic hydrocarbon biomarkers in terrestrial organic matter of Devonian to Permian age. Palaeogeogr Palaeoclimatol Palaeoecol 240:253–274CrossRefGoogle Scholar
  8. Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC (2007) Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316:280–285PubMedCrossRefPubMedCentralGoogle Scholar
  9. Auras S, Wilde V, Hoernes S, Scheffler K, Püttmann W (2006) Biomarker composition of higher plant macrofossils from Late Palaeozoic sediments. Palaeogeogr Palaeoclimatol Palaeoecol 240:305–317CrossRefGoogle Scholar
  10. Barbanti SM, Moldowan JM, Mello MR, Kolaczkowski E, Watt DS, Huizinga BJ (1999) Analysis and occurrence of novel triaromatic 23,24 dimethylcholestanes in geologic time. In: Proceedings of the 19th international meeting on organic geochemistry, Istanbul, 6–10 Sept 1999, pp 159–160Google Scholar
  11. Barbanti SM, Moldowan JM, Watt DS, Kolaczkowska E (2011) New triartomatic steroids distinguish Paleozoic from Mesozoic oil. Org Geochem 42:409–424CrossRefGoogle Scholar
  12. Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Syst 29:263–292CrossRefGoogle Scholar
  13. Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci 112:14518–14521PubMedCrossRefPubMedCentralGoogle Scholar
  14. Belt ST, Müller J (2013) The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat Sci Rev 79:9–25CrossRefGoogle Scholar
  15. Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27CrossRefGoogle Scholar
  16. Benton MJ (2008) When life nearly died: the greatest mass extinction of all time, 2nd edn. Thames & Hudson, LondonGoogle Scholar
  17. Bergstrom CT, Dugatkin LA (2012) Evolution. Norton, New York. 786 ppGoogle Scholar
  18. Bertazzo S, Maidment SCR, Kallepitis C, Fearn S, Stevens MM, Xie H (2015) Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat Commun 6:7352PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bianchi TS, Canuel EA (2011) Chemical biomarkers in aquatic ecosystems. Princeton University Press, Princeton. 392 ppCrossRefGoogle Scholar
  20. Blokker P, van Bergen P, Pancost R, Collinson ME, de Leeuw JW, Sinninghe Damsté JS (2001) The chemical structure of Gloeocapsomorpha prisca microfossils: implications for their origin. Geochim Cosmochim Acta 65:885–900CrossRefGoogle Scholar
  21. Boere AC, Rijpstra WIC, De Lange GJ, Sinninghe Damsté JS, Coolen MJL (2011) Preservation potential of ancient plankton DNA in Pleistocene marine sediments. Geobiology 9:377–393PubMedCrossRefPubMedCentralGoogle Scholar
  22. Brain CK, Prave AR, Hoffmann K-H, Fallick AE, Botha A, Herd DA, Sturrock C, Young I, Condon DJ, Allison SG (2012) The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. S Afr J Sci 108.  https://doi.org/10.4102/sajs.v108i1/2.658
  23. Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81PubMedCrossRefPubMedCentralGoogle Scholar
  24. Brasier M, McLoughlin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc B: Biol Sci 361:887–902CrossRefGoogle Scholar
  25. Brasier MD, Antcliffe J, Saunders M, Wacey D (2015) Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. Proc Natl Acad Sci 112:4859–4864PubMedCrossRefPubMedCentralGoogle Scholar
  26. Brassell SC (2014) Climatic influences on the Paleogene evolution of alkenones. Paleoceanography 29:255–272CrossRefGoogle Scholar
  27. Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133CrossRefGoogle Scholar
  28. Brassell SC, Dumitrescu M, the ODP Leg 198 Shipboard Scientific Party (2004) Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific. Org Geochem 35:181–188CrossRefGoogle Scholar
  29. Brennecka GA, Herrmann AC, Algeo TJ, Anbar AD (2011) Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc Natl Acad Sci U S A 108:17631–17634PubMedPubMedCentralCrossRefGoogle Scholar
  30. Brocks JJ (2011) Millimeter-scale concentration gradients of hydrocarbons in Archean shales: live-oil escape or fingerprint of contamination? Geochim Cosmochim Acta 75:3196–3213CrossRefGoogle Scholar
  31. Brocks JJ, Butterfield NJ (2009) Biogeochemistry: early animals out in the cold. Nature 457:672–673PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brocks JJ, Schaeffer P (2008) Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation. Geochim Cosmochim Acta 72:1396–1414CrossRefGoogle Scholar
  33. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedCrossRefPubMedCentralGoogle Scholar
  34. Brocks JJ, Buick R, Logan GA, Summons RE (2003a) Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67:4289–4319CrossRefGoogle Scholar
  35. Brocks JJ, Buick R, Summons RE, Logan GA (2003b) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335CrossRefGoogle Scholar
  36. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden S (2005) Biomarker evidence for green and purple sulfur bacteria in an intensely stratified Paleoproterozoic ocean. Nature 437:866–870PubMedCrossRefPubMedCentralGoogle Scholar
  37. Brocks JJ, Jarrett AJM, Sirantoine E, Kenig F, Moczydłowska M, Porter S, Hope J (2016) Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14:129–149PubMedCrossRefPubMedCentralGoogle Scholar
  38. Brocks JJ, Jarrett AJM, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T (2017) The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548:578–581PubMedCrossRefPubMedCentralGoogle Scholar
  39. Brown TA, Barnes IM (2015) The current and future applications of ancient DNA in Quaternary science. J Quat Sci 30:144–153CrossRefGoogle Scholar
  40. Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic sea ice proxy IP25. Nat Commun 5:4197PubMedCrossRefPubMedCentralGoogle Scholar
  41. Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404CrossRefGoogle Scholar
  42. Butterfield NJ, Rainbird RH (1998) Diverse organic-walled fossils, including “possible dinoflagellates”, from the early Neoproterozoic of Arctic Canada. Geology 26:963–966CrossRefGoogle Scholar
  43. Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36CrossRefGoogle Scholar
  44. Cao C, Zheng Q (2009) Geological event sequences of the Permian-Triassic transition recorded in the microfacies in Meishan section. Sci China D 52:1529–1536CrossRefGoogle Scholar
  45. Cao C, Love GD, Hays LE, Wang W, Shen S, Summons RE (2009) Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett 281:188–201CrossRefGoogle Scholar
  46. Cappellini E, Collins MJ, Gilbert MTP (2014) Unlocking ancient protein palimpsests. Science 343:1320–1322PubMedCrossRefPubMedCentralGoogle Scholar
  47. Cleland TP, Schroeter ER, Zamdborg L, Zheng W, Lee JE, Tran JC, Bern M, Duncan MB, Lebleu VS, Ahlf DR, Thomas PM, Kalluri R, Kelleher NL, Schweitzer MH (2015) Mass spectrometry and antibody-based characterization of blood vessels from Brachylophosaurus canadensis. J Proteome Res 14:5252–5262PubMedPubMedCentralCrossRefGoogle Scholar
  48. Collins MJ, Gernaey AM, Nielsen-Marsh CM, Vermeer C, Westbroek P (2000) Slow rates of degradation of osteocalcin: green light for fossil bone protein? Geology 28:1139–1142CrossRefGoogle Scholar
  49. Czaja AD, Johnson CM, Roden EE, Beard BL, Voegelin AR, Nägler TF, Beukes NJ, Wille M (2012) Evidence for free oxygen in the Neoarchean ocean based on coupled iron–molybdenum isotope fractionation. Geochim Cosmochim Acta 86:118–137CrossRefGoogle Scholar
  50. Derenne S, Metzger P, Largeau C (1992) Similar morphological and chemical variations of Gloeocapsomorpha prisca in Ordovician sediments and cultured Botryococcus braunii as a response to changes in salinity. Org Geochem 19:299–313CrossRefGoogle Scholar
  51. Droser ML, Gehling JG (2015) The advent of animals: the view from the Ediacaran. Proc Natl Acad Sci 112:4865–4870PubMedCrossRefPubMedCentralGoogle Scholar
  52. Duan Y, Anbar AD, Arnold GL, Lyons TW, Gordon GW, Kendall B (2010) Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim Cosmochim Acta 74:6655–6668CrossRefGoogle Scholar
  53. Dutkiewicz A, Volk H, Ridley J, George SC (2004) Geochemistry of oil in fluid inclusions in a middle Proterozoic igneous intrusion: implications for the source of hydrocarbons in crystalline rocks. Org Geochem 35:937–957CrossRefGoogle Scholar
  54. Dutkiewicz A, Volk H, George SC, Ridley J, Buick R (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geol 34:437–440CrossRefGoogle Scholar
  55. Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci 103:15759–15764PubMedCrossRefPubMedCentralGoogle Scholar
  56. Eigenbrode JL, Freeman KH, Summons RE (2008) Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis. Earth Planet Sci Lett 273:323–331CrossRefGoogle Scholar
  57. Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localisation of neutral long-chain lipids in the haptophyte algae, Isochrysis galbana and Emiliania huxleyi. J Phycol 41:1000–1009CrossRefGoogle Scholar
  58. Eme L, Sharpe SC, Brown MW, Roger AJ (2014) On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb Perspect Biol 6.  https://doi.org/10.1101/cshperspect.a016139
  59. Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton. 306 ppGoogle Scholar
  60. Falcón LI, Magallón S, Castillo A (2010) Dating the cyanobacterial ancestor of the chloroplast. ISME J 4:777–783PubMedCrossRefPubMedCentralGoogle Scholar
  61. Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–709PubMedCrossRefPubMedCentralGoogle Scholar
  62. Fenton S, Grice K, Twitchett RJ, Bottcher ME, Looy CV, Nabbefeld B (2007) Changes in biomarker abundances and sulfur isotopes of pyrite across the Permian-Triassic (P/Tr) Schuchert Dal section (East Greenland). Earth Planet Sci Lett 262:230–239CrossRefGoogle Scholar
  63. Fowler MG (1992) The influence of Gloeocapsomorpha prisca on the organic geochemistry of oils and organic-rich rocks of late Ordovician age from Canada. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution. Springer, Berlin, pp 336–348CrossRefGoogle Scholar
  64. Fowler MG, Stasiuk LD, Hearn M, Obermajer M (2004) Evidence for Gloeocapsomorpha prisca in Late Devonian source rocks from Southern Alberta, Canada. Org Geochem 35:425–441CrossRefGoogle Scholar
  65. French KL, Sepúlveda J, Trabucho-Alexandre J, Gröcke DR, Summons RE (2014) Organic geochemistry of the early Toarcian oceanic anoxic event in Hawsker Bottoms, Yorkshire, England. Earth Planet Sci Lett 390:116–127CrossRefGoogle Scholar
  66. French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA, Hoshino Y, Peters CA, George SC, Love GD, Brocks JJ, Buick R, Summons RE (2015) Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc Natl Acad Sci 112:5915–5920PubMedCrossRefPubMedCentralGoogle Scholar
  67. Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450:1184–1189PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gensel PG, Edwards D (2001) Plants invade the land: evolutionary and environmental perspectives. Columbia University Press, New York. 324 ppCrossRefGoogle Scholar
  69. George SC, Volk H, Dutkiewicz A, Ridley J, Buick R (2008) Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years. Geochim Cosmochim Acta 72:844–870CrossRefGoogle Scholar
  70. Georgiou CD, Deamer DW (2014) Lipids as universal biomarkers of extraterrestrial life. Astrobiology 14:541–549PubMedCrossRefPubMedCentralGoogle Scholar
  71. Gold DA, Grabenstatter J, de Mendoza A, Riesgo A, Ruiz-Trillo I, Summons RE (2016) Sterol and genomic analyses validate the sponge biomarker hypothesis. Proc Natl Acad Sci 113:2684–2689PubMedCrossRefPubMedCentralGoogle Scholar
  72. Goldblatt C, Lenton TM, Watson AJ (2006) Bistability of atmospheric oxygen and the Great Oxidation. Nature 443:683–686PubMedCrossRefPubMedCentralGoogle Scholar
  73. Greenwood PF, Summons RE (2003) GC-MS detection and significance of crocetane and pentamethylicosane in sediments and crude oils. Org Geochem 34:1211–1222CrossRefGoogle Scholar
  74. Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin Y (2005a) Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706–709PubMedCrossRefPubMedCentralGoogle Scholar
  75. Grice K, Twitchett RJ, Alexander R, Foster CB, Looy C (2005b) A potential biomarker for the Permian-Triassic ecological crisis. Earth Planet Sci Lett 236:315–321CrossRefGoogle Scholar
  76. Grice K, Nabbefeld B, Maslen E (2007) Source and significance of selected polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian-Triassic boundary. Org Geochem 38:1795–1803CrossRefGoogle Scholar
  77. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849PubMedCrossRefPubMedCentralGoogle Scholar
  78. Hickman-Lewis K, Garwood RJ, Brasier MD, Goral T, Jiang H, McLoughlin N, Wacey D (2016) Carbonaceous microstructures from sedimentary laminated chert within the 3.46 Ga Apex Basalt, Chinaman Creek locality, Pilbara, Western Australia. Precambrian Res 278:161–178CrossRefGoogle Scholar
  79. Hoffman CF, Foster CB, Powell TG, Summons RE (1987) Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917. Geochim Cosmochim Acta 51:2681–2697CrossRefGoogle Scholar
  80. Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleontol 50:1040–1073Google Scholar
  81. Holba AG, Dzou LIP, Masterson WD, Singletary MS, Moldowan JM, Mello MR, Tegelaar E (1998a) Application of 24-norcholestanes for constraining source age of petroleum. Org Geochem 29:1269–1283CrossRefGoogle Scholar
  82. Holba AG, Tegelaar EW, Huizinga BJ, Moldowan JM, Singletary MS, McCaffrey MA, Dzou LIP (1998b) 24-norcholestanes as age-sensitive molecular fossils. Geology 26:783–786CrossRefGoogle Scholar
  83. Holland HD (2002) Volcanic gases, black smokers, and the Great Oxidation Event. Geochim Cosmochim Acta 66:3811–3826CrossRefGoogle Scholar
  84. Holland H (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc B: Biol Sci 361:903–915CrossRefGoogle Scholar
  85. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF (2016) A new view of the tree of life. Nat Microbiol 1:16048PubMedCrossRefPubMedCentralGoogle Scholar
  86. Hurley SJ, Elling FJ, Könneke M, Buchwald C, Wankel SD, Santoro AE, Lipp JS, Hinrichs K-U, Pearson A (2016) Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy. Proc Natl Acad Sci 113:7762–7767PubMedCrossRefPubMedCentralGoogle Scholar
  87. Javaux EJ, Knoll AH, Walter MR (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33:75–94PubMedCrossRefPubMedCentralGoogle Scholar
  88. Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121–132CrossRefGoogle Scholar
  89. Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938PubMedCrossRefPubMedCentralGoogle Scholar
  90. Jenkyns HC, Schouten-Huibers L, Schouten S, Sinninghe Damsté JS (2012) Warm middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Clim Past 8:215–226CrossRefGoogle Scholar
  91. Jia C, Huang J, Kershaw S, Luo G, Farabegoli E, Perri MC, Chen L, Bai X, Xie S (2012) Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction. Geobiology 10:60–71PubMedCrossRefGoogle Scholar
  92. Jossang J, Bel-Kassaoui H, Jossang A, Seuleiman M, Nel A (2008) Quesnoin, a novel pentacyclic ent-diterpene from 55 Million years old Oise amber. J Org Chem 73:412–417PubMedCrossRefPubMedCentralGoogle Scholar
  93. Kim J-H, van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Koç N, Hopmans EC, Sinninghe Damsté JS (2010) New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta 74:4639–4654CrossRefGoogle Scholar
  94. Kim J-H, Schouten S, Rodrigo-Gámiz M, Rampen S, Marino G, Huguet C, Helmke P, Buscail R, Hopmans EC, Pross J, Sangiorgi F, Middelburg JBM, Sinninghe Damsté JS (2015) Influence of deep-water derived isoprenoid tetraether lipids on the paleothermometer in the Mediterranean Sea. Geochim Cosmochim Acta 150:125–141Google Scholar
  95. Kirkpatrick JB, Walsh EA, D’Hondt S (2016) Fossil DNA persistence and decay in marine sediment over hundred-thousand-year to million-year time scales. Geology 44:615–618CrossRefGoogle Scholar
  96. Kirschvink JL, Kopp RE (2008) Paleoproterozic icehouses and the evolution of oxygen mediating enzymes: the case for a late origin of photosystem-II. Philos Trans R Soc B 363:2755–2765CrossRefGoogle Scholar
  97. Knoll AH (2015) Paleobiological perspectives on early microbial evolution. Cold Spring Harb Perspect Biol 7:a018093PubMedPubMedCentralCrossRefGoogle Scholar
  98. Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B: Biol Sci 361:1023–1038CrossRefGoogle Scholar
  99. Knoll AH, Summons RE, Waldbauer JR, Zumberge JE (2007a) The geological succession of primary producers in the oceans. In: Falkowski P, Knoll AH (eds) The evolution of primary producers in the sea. Academic, Boston, pp 133–164CrossRefGoogle Scholar
  100. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007b) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313CrossRefGoogle Scholar
  101. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci 102:11131–11136PubMedCrossRefPubMedCentralGoogle Scholar
  102. Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448:1033–1036PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lalonde SV, Konhauser KO (2015) Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc Natl Acad Sci 112:995–1000PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lengger SK, Hopmans EC, Sinninghe Damsté JS, Schouten S (2014) Fossilization and degradation of archaeal intact polar tetraether lipids in deeply buried marine sediments (Peru Margin). Geobiology 12:212–220PubMedCrossRefPubMedCentralGoogle Scholar
  105. Liao J, Lu H, Sheng G, Peng P, Hsu CS (2015) Monoaromatic, diaromatic, triaromatic, and tetraaromatic hopanes in Kukersite shale and their stable carbon isotopic composition. Energy Fuel 29:3573–3583CrossRefGoogle Scholar
  106. Lindgren J, Uvdal P, Engdahl A, Lee AH, Alwmark C, Bergquist K-E, Nilsson E, Ekström P, Rasmussen M, Douglas DA, Polcyn MJ, Jacobs LL (2011) Microspectroscopic evidence of Cretaceous bone proteins. PLoS One 6:e19445PubMedPubMedCentralCrossRefGoogle Scholar
  107. Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CE, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian Period. Nature 457:718–721PubMedCrossRefPubMedCentralGoogle Scholar
  108. Manning PL, Morris PM, McMahon A, Jones E, Gize A, Macquaker JHS, Wolff G, Thompson A, Marshall J, Taylor KG, Lyson T, Gaskell S, Reamtong O, Sellers WI, van Dongen BE, Buckley M, Wogelius RA (2009) Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA). Proc R Soc B 276:3429–3437PubMedCrossRefPubMedCentralGoogle Scholar
  109. Marshall AG, Rodgers RP (2008) Petroleomics: chemistry of the underworld. Proc Natl Acad Sci 105:18090–18095PubMedCrossRefPubMedCentralGoogle Scholar
  110. Martin WF, Sousa FL (2016) Early microbial evolution: the age of anaerobes. Cold Spring Harb Perspect Biol 8:a018127PubMedCentralCrossRefGoogle Scholar
  111. Massé G, Belt ST, Rowland SJ, Rohmer M (2004) Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc Natl Acad Sci 101:4413–4418PubMedCrossRefPubMedCentralGoogle Scholar
  112. McCaffrey MA, Moldowan JM, Lipton PA, Summons RE, Peters KE, Jeganathan A, Watt DS (1994) Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochim Cosmochim Acta 58:529–532CrossRefGoogle Scholar
  113. McKeegan KD, Kudryavtsev AB, Schopf JW (2007) Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, West Greenland. Geology 35:591–594CrossRefGoogle Scholar
  114. McKirdy DM, Imbus SW (1992) Precambrian petroleum: a decade of changing perceptions. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution: implications for mineral and energy resources. Springer, Berlin, pp 176–192CrossRefGoogle Scholar
  115. Medlin LK, Sáez AG, Young JR (2008) A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Mar Micropaleontol 67:69–86CrossRefGoogle Scholar
  116. Meng F, Zhou C, Yin L, Chen Z, Yuan X (2005) The oldest known dinoflagellates: morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province. Chin Sci Bull 50:1230–1234CrossRefGoogle Scholar
  117. Metzger P, Largeau C (1994) A new type of ether lipid comprising phenolic moieties in Botryococcus braunii. Chemical structure and abundance, and geochemical implications. Org Geochem 22:801–814CrossRefGoogle Scholar
  118. Meyer M, Arsuaga J-L, de Filippo C, Nagel S, Aximu-Petri A, Nickel B, Martínez I, Gracia A, de Castro JMB, Carbonell E, Viola B, Kelso J, Prüfer K, Pääbo S (2016) Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531:504–507PubMedCrossRefPubMedCentralGoogle Scholar
  119. Moczydłowska M, Landing E, Zang W, Palacios T (2011) Proterozoic phytoplankton and timing of chlorophyte algae origins. Palaeontology 54:721–733CrossRefGoogle Scholar
  120. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59PubMedCrossRefPubMedCentralGoogle Scholar
  121. Moldowan JM (2000) Trails of life. Chem Br 36:34–37Google Scholar
  122. Moldowan JM, Jacobson SR (2000) Chemical signals for early evolution of major taxa: biosignatures and taxon-specific biomarkers. Int Geol Rev 42:805–812CrossRefGoogle Scholar
  123. Moldowan JM, Talyzina NM (1998) Biogeochemical evidence for dinoflagellate ancestors in the early Cambrian. Science 281:1168–1170PubMedCrossRefPubMedCentralGoogle Scholar
  124. Moldowan JM, Fago FJ, Lee CY, Jacobson SR, Watt DS, Slougui N-E, Jeganathan A, Young DC (1990) Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science 247:309–312PubMedCrossRefPubMedCentralGoogle Scholar
  125. Moldowan JM, Dahl J, Huizinga BJ, Fago FJ, Hickey LJ, Peakman TM, Taylor DW (1994) The molecular fossil record of oleanane and its relation to angiosperms. Science 265:768–771PubMedCrossRefPubMedCentralGoogle Scholar
  126. Moldowan JM, Dahl J, Jacobson SR, Huizinga BJ, Fago FJ, Shetty R, Watt DS, Peters KE (1996) Chemostratigraphic reconstruction of biofacies; molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors. Geology 24:159–162CrossRefGoogle Scholar
  127. Moldowan JM, Moldowan S, Blanco-Velandia V, Blanco-Velandia Y, Orejuela-Parra C, Bott G, Dahl J (2015) Llanos Basin: unraveling its complex petroleum systems with advanced geochemical technologies. AAPG Search Discovery 10776. http://www.searchanddiscovery.com/documents/2012/40979dahl/ndx_dahl.pdf
  128. Newman DK, Neubauer C, Ricci JN, Wu C-H, Pearson A (2016) Cellular and molecular biological approaches to interpreting ancient biomarkers. Annu Rev Earth Planet Sci 44:493–522CrossRefGoogle Scholar
  129. Nisbet EG, Grassineau NV, Howe CJ, Abell PI, Regelous M, Nisbet RER (2007) The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5:311–335CrossRefGoogle Scholar
  130. Nishizawa M, Takahata N, Terada K, Komiya T, Ueno Y, Sano Y (2005) Rare-earth element, lead, carbon, and nitrogen geochemistry of apatite-bearing metasediments from the 3.8 Ga Isua Supracrustal Belt, West Greenland. Int Geol Rev 47:952–970CrossRefGoogle Scholar
  131. Nutman AP, Bennett VC, Friend CRL, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538PubMedCrossRefPubMedCentralGoogle Scholar
  132. Pak R, Pemberton SG, Stasiuk L (2010) Paleoenvironmental and taphonomic implications of trace fossils in Ordovician kukersites. Bull Can Petrol Geol 58:141–158CrossRefGoogle Scholar
  133. Pancost RD, Freeman KH, Patzkowsky ME, Wavrek DA, Collister JW (1998) Molecular indicators of redox and marine photoautotroph composition in the late Middle Ordovician of Iowa, U.S.A. Org Geochem 29:1649–1662CrossRefGoogle Scholar
  134. Pang K, Tang Q, Schiffbauer JD, Yao J, Yuan X, Wan B, Chen L, Ou Z, Xiao S (2013) The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11:499–510PubMedPubMedCentralGoogle Scholar
  135. Papineau D, De Gregorio BT, Cody GD, Fries MD, Mojzsis SJ, Steele A, Stroud RM, Fogel ML (2010) Ancient graphite in the Eoarchean quartz-pyroxene rocks from Akilia in southern West Greenland I: petrographic and spectroscopic characterization. Geochim Cosmochim Acta 74:5862–5883CrossRefGoogle Scholar
  136. Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci 108:13624–13629PubMedCrossRefPubMedCentralGoogle Scholar
  137. Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41PubMedCrossRefPubMedCentralGoogle Scholar
  138. Pawlowska MM, Butterfield NJ, Brocks JJ (2013) Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41:103–106CrossRefGoogle Scholar
  139. Payne JL, Clapham ME (2012) End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu Rev Earth Planet Sci 40:89–111CrossRefGoogle Scholar
  140. Pearson A, Ingalls AE (2013) Assessing the use of archaeal lipids as marine environmental proxies. Annu Rev Earth Planet Sci 41:359–384CrossRefGoogle Scholar
  141. Penny D, Poole A (1999) The nature of the last universal common ancestor. Curr Opin Genet Dev 9:672–677PubMedCrossRefPubMedCentralGoogle Scholar
  142. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide, vol 1 & 2. Cambridge University Press, Cambridge. 1155 ppGoogle Scholar
  143. Peterson KJ, Summons RE, Donoghue PCJ (2007) Molecular paleobiology. Palaeontology 50:775–809CrossRefGoogle Scholar
  144. Pinti DL, Altermann W (2011) Apex Chert, microfossils. In: Gargaud M, Amils R, Quintanilla JC, Cleaves HJ, Irvine WM, Pinti DL, Viso M (eds) Encyclopedia of astrobiology. Springer, Berlin, pp 48–54CrossRefGoogle Scholar
  145. Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith AJB, Beukes NJ, Bekker A, Johnson TM, Konhauser KO, Lyons TW, Rouxel OJ (2014a) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7:283–286CrossRefGoogle Scholar
  146. Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P, Rainbird RH, Johnson T, Fischer WW, Lyons TW (2014b) Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635–638PubMedCrossRefPubMedCentralGoogle Scholar
  147. Rampen SW, Schouten S, Abbas B, Panoto FE, Muyzer G, Campbell CN, Fehling J, Sinninghe Damsté JS (2007a) On the origin of 24-norcholestanes and their use as age-diagnostic biomarkers. Geology 35:419–422CrossRefGoogle Scholar
  148. Rampen SW, Schouten S, Sinninghe Damsté JS (2007b) Origin of 4-desmethyl-dinosteranes in sediments and oils. In: 23rd international meeting on organic geochemistry, Torquay, 9–14 Sept 2007 Abstract O43Google Scholar
  149. Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci 104:15099–15104PubMedCrossRefPubMedCentralGoogle Scholar
  150. Rasmussen B, Buick R (1999) Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27:115–118CrossRefGoogle Scholar
  151. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104PubMedCrossRefPubMedCentralGoogle Scholar
  152. Raymond J, Blankenship RE (2004) Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2:199–203CrossRefGoogle Scholar
  153. Reed JD, Illich HA, Horsfield B (1986) Biochemical evolutionary significance of Ordovician oils and their sources. Org Geochem 10:347–358CrossRefGoogle Scholar
  154. Retallack GJ, Jahren AH (2008) Methane release from igneous intrusion of coal during late Permian extinction events. J Geol 116:1–20CrossRefGoogle Scholar
  155. Ricci JN, Coleman ML, Welander PV, Sessions AL, Summons RE, Spear JR, Newman DK (2014) Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. ISME J 8:675–684PubMedCrossRefPubMedCentralGoogle Scholar
  156. Rye R, Holland HD (1998) Paleosols and the evolution of atmospheric oxygen: a critical review. Am J Sci 298:621–672PubMedCrossRefPubMedCentralGoogle Scholar
  157. Saito R, Oba M, Kaiho K, Schaeffer P, Adam P, Takahashi S, Nara FW, Chen Z-Q, Tong J, Tsuchiya N (2014) Extreme euxinia prior to the Middle Triassic biotic recovery from the latest Permian mass extinction. Org Geochem 73:113–122CrossRefGoogle Scholar
  158. Sarafian AR, Nielsen SG, Marschall HR, McCubbin FM, Monteleone BD (2014) Early accretion of water in the inner solar system from a carbonaceous chondrite–like source. Science 346:623–626PubMedCrossRefPubMedCentralGoogle Scholar
  159. Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res 106:117–134CrossRefGoogle Scholar
  160. Schirrmeister BE, Gugger M, Donoghue PCJ (2015) Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology 58:769–785PubMedPubMedCentralCrossRefGoogle Scholar
  161. Schopf JW (1993) Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–646PubMedCrossRefPubMedCentralGoogle Scholar
  162. Schopf J (2006) Fossil evidence of Archaean life. Philos Trans R Soc B: Biol Sci 361:869–885CrossRefGoogle Scholar
  163. Schopf JW, Kudryavtsev AB (2012) Biogenicity of Earth’s earliest fossils: a resolution of the controversy. Gondwana Res 22:761–771CrossRefGoogle Scholar
  164. Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73PubMedCrossRefGoogle Scholar
  165. Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: stromatolites and microfossils. Precambrian Res 158:141–155CrossRefGoogle Scholar
  166. Schouten S, Hopmans EC, Schefuß E, Sinninghe Damsté JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274CrossRefGoogle Scholar
  167. Schulze T, Michaelis W (1990) Structure and origin of terpenoid hydrocarbons in some German coals. Org Geochem 16:1051–1058CrossRefGoogle Scholar
  168. Schwarzbauer A, Jovančićević B (2016) From biomolecules to chemofossils. Springer, 160 ppGoogle Scholar
  169. Schweitzer MH, Zheng W, Organ CL, Avci R, Suo Z, Freimark LM, Lebleu VS, Duncan MB, Vander Heiden MG, Neveu JM, Lane WS, Cottrell JS, Horner JR, Cantley LC, Kalluri R, Asara JM (2009) Biomolecular characterization and protein sequences of the Campanian Hadrosaur B. canadensis. Science 324:626–663PubMedCrossRefPubMedCentralGoogle Scholar
  170. Schweitzer MH, Zheng W, Cleland TP, Bern M (2013) Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone 52:414–423PubMedCrossRefPubMedCentralGoogle Scholar
  171. Sephton MA, Looy CV, Brinkhuis H, Wignall PB, de Leeuw JW, Visscher H (2005) Catastrophic soil erosion during the end-Permian biotic crisis. Geology 33:941–944CrossRefGoogle Scholar
  172. Sephton MA, Sims MR, Court RW, Luong D, Cullen DC (2013) Searching for biomolecules on Mars: considerations for operation of a Life Marker Chip instrument. Planet Space Sci 86:66–74CrossRefGoogle Scholar
  173. Seufferheld M, Vieira MCF, Ruiz FA, Rodrigues CO, Moreno SNJ, Docampo R (2003) Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J Biol Chem 278:29971–29978PubMedCrossRefPubMedCentralGoogle Scholar
  174. Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean Era. Nature 410:77–81PubMedCrossRefPubMedCentralGoogle Scholar
  175. Sheridan PP, Freeman KH, Brenchley JE (2003) Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol J 20:1–14CrossRefGoogle Scholar
  176. Sherwood Lollar B, Lacrampe-Couloume G, Telling J, McCollom TM, Slater GF (2006) Compound specific isotope analysis and the challenge for identifying life: the role of biosignatures and abiosignatures. Geochim Cosmochim Acta 70:A582CrossRefGoogle Scholar
  177. Siljeström S, Volk H, George SC, Lausmaa J, Sjövall P, Dutkiewicz A, Hode T (2013) Analysis of single oil-bearing fluid inclusions in mid-Proterozoic sandstones (Roper Group, Australia). Geochim Cosmochim Acta 122:448–463CrossRefGoogle Scholar
  178. Simoneit BRT (2004) Biomarkers (molecular fossils) as geochemical indicators of life. Adv Space Res 33:1255–1261CrossRefGoogle Scholar
  179. Sinninghe Damsté JS, Muyzer G, Abbas B, Rampen SW, Massé G, Allard WG, Belt ST, Robert J-M, Rowland SJ, Moldowan JM, Barbanti SM, Fago FJ, Denisevich P, Dahl J, Trindade LAF, Schouten S (2004) The rise of the rhizosolenid diatoms. Science 304:584–587CrossRefGoogle Scholar
  180. Sinninghe Damsté JS, Rijpstra WIC, Hopmans EC, Foesel BU, Wüst PK, Overmann J, Tank M, Bryant DA, Dunfield PF, Houghton K, Stott MB (2014) Ether- and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria subdivision 4. Appl Environ Microbiol 80:5207–5218PubMedPubMedCentralCrossRefGoogle Scholar
  181. Sorhannus U (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar Micropaleontology 65:1–12CrossRefGoogle Scholar
  182. Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179PubMedPubMedCentralCrossRefGoogle Scholar
  183. Stasiuk LD, Osadetz KG (1990) Progress in the life cycle and phyletic affinity of Gloeocapsomorpha prisca Zalessky 1917 from Ordovician rocks in Canadian Williston Basin. Geol Sur Canada Curr Res D:127–137Google Scholar
  184. Summons RE, Walter MR (1990) Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Am J Sci 290-A:212–244Google Scholar
  185. Summons RE, Brassell SC, Eglinton G, Evans E, Horodyski RJ, Robinson N, Ward DM (1988a) Distinctive hydrocarbon biomarkers from fossiliferous sediment of the late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim Cosmochim Acta 52:2625–2637CrossRefGoogle Scholar
  186. Summons RE, Powell TG, Boreham CJ (1988b) Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, northern Australia: III. Composition of extractable hydrocarbons. Geochim Cosmochim Acta 52:1747–1763CrossRefGoogle Scholar
  187. Summons RE, Thomas J, Maxwell JR, Boreham CJ (1992) Secular and environmental constraints on the occurrence of dinosterane in sediments. Geochim Cosmochim Acta 56:2437–2444CrossRefGoogle Scholar
  188. Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacteial oxygenic photosynthesis. Nature 400:554–557PubMedCrossRefGoogle Scholar
  189. Summons RE, Bradley AS, Jahnke LL, Waldbauer JR (2006a) Steroids, triterpenoids and molecular oxygen. Philos Trans R Soc B 361:951–968CrossRefGoogle Scholar
  190. Summons RE, Love GD, Hays L, Cao C, Jin Y, Shen SZ, Grice K, Foster CB (2006b) Molecular evidence for prolonged photic zone euxinia at the Meishan and East Greenland sections of the Permian Triassic Boundary. Geochim Cosmochim Acta 70:A625Google Scholar
  191. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277:490–500CrossRefGoogle Scholar
  192. Taylor DW, Li H, Dahl J, Fago FJ, Zinniker D, Moldowan JM (2006) Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils. Paleobiology 32:179–190CrossRefGoogle Scholar
  193. Thomas BM, Willink RJ, Grice K, Twitchett RJ, Purcell RR, Archbold NW, George AD, Tye S, Alexander R, Foster CB, Barber CJ (2004) Unique marine Permian-Triassic boundary section from Western Australia. Aust J Earth Sci 51:423–430CrossRefGoogle Scholar
  194. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci 103:5442–5447PubMedCrossRefGoogle Scholar
  195. Uda I, Sugai A, Itoh YH, Itoh T (2001) Variation on molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 36:103–105PubMedCrossRefGoogle Scholar
  196. Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519PubMedCrossRefGoogle Scholar
  197. Ventura GT, Kenig F, Reddy CM, Schieber J, Frysinger GS, Nelson RK, Dinel E, Gaines RB, Schaeffer P (2007) Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere. Proc Natl Acad Sci 104:14260–14265PubMedCrossRefGoogle Scholar
  198. Volk H, George SC, Dutkiewicz A, Ridley J (2005) Characterisation of fluid inclusion oil in a Mid-Proterozoic sandstone and dolerite (Roper Superbasin, Australia). Chem Geol 223:109–135CrossRefGoogle Scholar
  199. Volkman JK (2005) Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org Geochem 36:139–159CrossRefGoogle Scholar
  200. Volkman JK (2006) Lipid markers for marine organic matter. In: Volkman JK (ed) The handbook of environmental chemistry, Vol 2: Reactions and processes, Part N, Marine organic matter: biomarkers, isotopes and DNA. Springer, Berlin, pp 27–70CrossRefGoogle Scholar
  201. Volkman JK (2014) Acyclic isoprenoid biomarkers and evolution of biosynthetic pathways in green microalgae of the genus Botryococcus. Org Geochem 75:36–47CrossRefGoogle Scholar
  202. Wacey D, McLoughlin N, Whitehouse MJ, Kilburn MR (2010) Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology 38:1115–1118CrossRefGoogle Scholar
  203. Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702CrossRefGoogle Scholar
  204. Wacey D, Noffke N, Cliff J, Barley ME, Farquhar J (2015) Micro-scale quadruple sulfur isotope analysis of pyrite from the ∼3480 Ma Dresser formation: new insights into sulfur cycling on the early Earth. Precambrian Res 258:24–35CrossRefGoogle Scholar
  205. Waldbauer JR, Sherman LS, Sumner DY, Summons RE (2009a) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47CrossRefGoogle Scholar
  206. Waldbauer JR, Newman DK, Summons RE (2009b) Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proc Natl Acad Sci 108:13409–13414CrossRefGoogle Scholar
  207. Wallace MW, Hood AS, Woon EMS, Hoffmann K-H, Reed CP (2014) Enigmatic chambered structures in Cryogenian reefs: the oldest sponge-grade organisms? Precambrian Res 255:109–123CrossRefGoogle Scholar
  208. Wang C, Visscher H (2007) Abundance anomalies of aromatic biomarkers in the Permian-Triassic boundary section at Meishan, China – evidence of end-Permian terrestrial ecosystem collapse. Palaeogeogr Palaeoclimatol Palaeoecol 252:291–303CrossRefGoogle Scholar
  209. Ward LM, Kirschvink JL, Fischer WW (2016) Timescales of oxygenation following the evolution of oxygenic photosynthesis. Orig Life Evol Biosph 46:51–65PubMedCrossRefPubMedCentralGoogle Scholar
  210. Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29:456–463PubMedCrossRefPubMedCentralGoogle Scholar
  211. Wei JH, Yin X, Welander PV (2016) Sterol synthesis in diverse bacteria. Front Microbiol 7:990PubMedPubMedCentralGoogle Scholar
  212. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116PubMedCrossRefPubMedCentralGoogle Scholar
  213. Welander PV, Summons RE (2012) Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc Natl Acad Sci 109:12905–12910PubMedCrossRefPubMedCentralGoogle Scholar
  214. Welander PV, Coleman ML, Sessions AL, Summons RE, Newman DK (2010) Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc Natl Acad Sci 107:8537–8542PubMedCrossRefPubMedCentralGoogle Scholar
  215. Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285PubMedCrossRefPubMedCentralGoogle Scholar
  216. Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–330CrossRefGoogle Scholar
  217. Whiteside JH, Grice K (2016) Biomarker records associated with mass extinction events. Annu Rev Earth Planet Sci 44:581–612CrossRefGoogle Scholar
  218. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–795PubMedCrossRefPubMedCentralGoogle Scholar
  219. Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, Brand TB, Hofreiter M, Bunce M, Poinar HN, Dahl-Jensen D, Johnsen S, Steffensen JP, Bennike O, Schwenninger J-L, Nathan R, Armitage S, de Hoog C-J, Alfimov V, Christl M, Beer J, Muscheler R, Barker J, Sharp M, Penkman KEH, Haile J, Taberlet P, Gilbert MTP, Casoli A, Campani E, Collins MJ (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317:111–114PubMedPubMedCentralCrossRefGoogle Scholar
  220. Williams TA, Foster PG, Cox CJ, Embley TM (2013) An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504:231–236PubMedCrossRefPubMedCentralGoogle Scholar
  221. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579PubMedPubMedCentralCrossRefGoogle Scholar
  222. Xie SC, Pancost RD, Yin HF, Wang HM, Evershed RP (2005) Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434:494–497PubMedCrossRefPubMedCentralGoogle Scholar
  223. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730PubMedCrossRefPubMedCentralGoogle Scholar
  224. Zhang S, Moldowan JM, Li M, Bian L, Zhang B, Wang F (2002) The abnormal distribution of the molecular fossils in the pre-Cambrian and Cambrian: its biological significance. Sci China Ser D 45:193–200CrossRefGoogle Scholar
  225. Zhu S, Zhu M, Knoll AH, Yin Z, Zhao F, Sun S, Qu Y, Shi M, Liu H (2016) Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang formation in North China. Nature Commun 7:11500CrossRefGoogle Scholar
  226. Zinniker D (2005) New insights into molecular fossils : the fate of terpenoids and the origin of gem-dialkylalkanes in the geological environment. PhD. dissertation, Stanford Univ: 321 pp.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Clifford C. Walters
    • 1
  • Kenneth E. Peters
    • 2
  • J. Michael Moldowan
    • 3
    • 4
  1. 1.Corporate Strategic ResearchExxonMobil Research & Engineering Co.AnnandaleUSA
  2. 2.SchlumbergerMill ValleyUSA
  3. 3.Biomarker TechnologyRohnert ParkUSA
  4. 4.Department of Geological SciencesStanford UniversityStanfordUSA

Personalised recommendations