Advertisement

Formation of Organic-Rich Sediments and Sedimentary Rocks

  • Ralf LittkeEmail author
  • Laura Zieger
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Organic matter-rich sediments are deposited in a variety of continental and marine settings. Their formation strongly depends on bioproductivity and preservation of organic material, which in turn is affected by sediment composition as well as aerobic and anaerobic microbial activity. Burial, pressure, and temperature increase leads to loss of porosity and mineral reactions, ultimately to the formation of sedimentary rocks, and to transformation of primary biomass into insoluble and soluble sedimentary organic matter, i.e., kerogen and bitumen.

References

  1. Bandopadhyay AK, Mohanty D (2014) Variation in hydrogen content of vitrinite concentrates with rank advance. Fuel 134:220–225CrossRefGoogle Scholar
  2. Bao R, McInyre C, Zhao M, Zhu C, Kao SJ, Eglinton TI (2016) Widespread dispersal and aging of organic carbon in shallow marginal seas. Geology 44(10):791–794CrossRefGoogle Scholar
  3. Barakat AO, Rullkötter J (1993) Gas-chromatographic mass-spectrometric analysis of cembrenoid diterpenes in kerogen from a lacustrine sediment. Org Mass Spectrosc 28(3):157–162CrossRefGoogle Scholar
  4. Baskin DK, Peters KE (1992) Early generation characteristics of a sulfur-rich Monterey kerogen. Pet Geol 76(1):1–13Google Scholar
  5. Bauersachs T, Schouten S, Schwark L (2014) Characterization of the sedimentary organic matter preserved in Messel oil shale by bulk geochemistry and stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 410:390–400CrossRefGoogle Scholar
  6. Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48(4): 605–615CrossRefGoogle Scholar
  7. Boudou JP, Schimmelmann A, Ader M, Mastalerz M, Sebilo M, Gengembre L (2008) Organic nitrogen chemistry during low-grade metamorphism. Geochim Cosmochim Acta 72(4): 1199–1221CrossRefGoogle Scholar
  8. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389(6647):153–158CrossRefGoogle Scholar
  9. Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr Biol 18(1):37–43CrossRefGoogle Scholar
  10. De Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry. Topics in Geobiology, vol 11. Springer, BostonGoogle Scholar
  11. Edwards D, Feehan J, Smith DG (1983) A late Wenlock flora from Co. Tipperary, Ireland. Bot J Linn Soc 86(1–2):19–36CrossRefGoogle Scholar
  12. Fabbri D, Torri C, Simoneit BRT, Marynowski L, Rushdi AI, Fabiańska MJ (2009) Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmos Environ 43:2286–2295CrossRefGoogle Scholar
  13. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  14. Fischer JP, Ferdelman TG, D’Hondt S, Røy H, Wenzhöfer F (2009) Oxygen penetration deep into the sediment of the South Pacific gyre. Biogeosciences 6(8):1467–1478CrossRefGoogle Scholar
  15. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Actra 43(7):1075–1090CrossRefGoogle Scholar
  16. Fuenzalida R, Schneider W, Garcés-Vargas J, Bravo L, Lange C (2009) Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep-Sea Res II 56:992–1003CrossRefGoogle Scholar
  17. Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4(4):243–289CrossRefGoogle Scholar
  18. Haake B, Ittekkot V, Rixen T, Ramaswamy V, Nair RR, Curry WB (1993) Seasonality and interannual variability of particle fluxes to the deep Arabian Sea. Deep-Sea Res I 40(7): 1323–1344CrossRefGoogle Scholar
  19. Hartkopf-Fröder C, Königshof P, Littke R, Schwarzbauer J (2015) Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: a review. Int J Coal Geol 150:74–119CrossRefGoogle Scholar
  20. Hatcher PG, Breger IA, Szeverenyi N, Maciel GE (1982) Nuclear magnetic resonance studies of ancient buried wood: II. Observations on the origin of coal from lignite bitulinous coal. Org Geochem 4:9–18CrossRefGoogle Scholar
  21. Hatcher PG, Wilson MA, Vassallo AM, Lerch HE III (1989) Studies of angiospermous wood in Australian brown coal by nuclear magnetic resonance and analytic pyrolysis: new insights into the early coalification process. Int J Coal Geol 13:99–126CrossRefGoogle Scholar
  22. Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49(2–3):81–115CrossRefGoogle Scholar
  23. Hedges JI, Cowie GL, Ertel JR, Hatcher PG (1985) Degradation of carbohydrates and lignins in buried woods. Geochim Cosmochim Acta 49:701–711CrossRefGoogle Scholar
  24. Hedges JI, Clark WA, Come GL (1988) Organic matter sources to the water column and surficial sediments of a marine bay. Limnol Oceanogr 33(5):1116–1136CrossRefGoogle Scholar
  25. Hopmans EC, Weijers JWH, Schefuß E, Herfort L, Sinninghe Damsté JS, Schouten S (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224(1):107–116CrossRefGoogle Scholar
  26. Huc AY (1988) Aspects of depositional processes of organic matter in sedimentary basins. Org Geochem 13(1–3):263–272CrossRefGoogle Scholar
  27. Huston MA, Wolverton S (2009) The global distribution of net primary production: resolving the paradox. Ecol Monogr 79(3):343–377CrossRefGoogle Scholar
  28. Inthorn M, Wagner T, Scheeder G, Zabel M (2006) Lateral transport controls distribution, quality, and burial of organic matter along continental slopes in high-productivity areas. Geology 34:205–208CrossRefGoogle Scholar
  29. Jasper K, Krooss BM, Flajs G, Hartkopf-Fröder C, Littke R (2009) Characteristics of type III kerogen in coal-bearing strata from the Pennsylvanian (upper carboniferous) in the Ruhr Basin, Western Germany: comparison of coals, dispersed organic matter, kerogen concentrates and coal–mineral mixtures. Int J Coal Geol 80(1):1–19CrossRefGoogle Scholar
  30. Jørgensen BB (1982) Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296(5858):643–645CrossRefGoogle Scholar
  31. Littke R (1993) Deposition, diagenesis and weathering of organic matter-rich sediments. Lecture notes in earth sciences, vol 47. Springer, Berlin/HeidelbergGoogle Scholar
  32. Lückge A, Ercegovac M, Strauss H, Littke R (1999) Early diagenetic alteration of organic matter by sulfate reduction in quaternary sediments from the northeastern Arabian Sea. Mar Geol 158:1–13CrossRefGoogle Scholar
  33. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20(7):867–900CrossRefGoogle Scholar
  34. Moore PD (1995) Biological processes controlling the development of modem peat-forming ecosystems. Int J Coal 28:99–110CrossRefGoogle Scholar
  35. National Centers for environmental information NOAA (2013) World Ocean atlas 2013 version 2. https://www.nodc.noaa.gov/cgi-bin/OC5/woa13fv2/woa13oxnufv2.pl
  36. Niklas KJ (1986) Large-scale changes in animal and plant terrestrial communities. In: Raup DM, Jablonski D (eds) Patterns and processes in the history of life. Dahlem workshop reports (Life sciences research reports), vol 36. Springer, Berlin/Heidelberg, pp 383–405Google Scholar
  37. Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818CrossRefGoogle Scholar
  38. Paulmier A, Ruiz-Pino D (2009) Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr 80:113–128CrossRefGoogle Scholar
  39. Peters KE (1986) Guidelinesfor evaluating petroleum source rocks ussing programmed pyrolysis. Amer Assoc Petr Geol Bull 70:318–329Google Scholar
  40. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide. Cambridge University Press, Cambridge, UKGoogle Scholar
  41. Reimers CE, Suess E (1983) The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean. Mar Chem 13:141–168CrossRefGoogle Scholar
  42. Rippen D, Littke R, Bruns B, Mahlstedt N (2013) Organic geochemistry and petrography of lower cretaceous Wealden black shales of the Lower Saxony Basin: the transition from lacustrine oil shales to gas shales. Org Geochem 63:18–36CrossRefGoogle Scholar
  43. Robinson JM (1990) Lignin, land plants, and fungi: biological evolution affecting Phanerozoic oxygen balance. Geology 15:607–610CrossRefGoogle Scholar
  44. Rullkötter J, Marzi R (1988) Natural and artificial maturation of biological markers in Toarcian shale from northern Germany. Org Geochem 13:639–645CrossRefGoogle Scholar
  45. Rullkötter J, Littke R, Schaefer RG (1990) Characterization of organic matter in sulfur-rich lacustrine sediments of Miocene age (Nördlinger Ries, southern Germany). In: Orr WL, White CH (eds) Geochemistry of sulfur in fossil fuels. ACS symposium series, vol 429. American Chemical Society, Washington, DC, pp 149–169CrossRefGoogle Scholar
  46. Rullkötter J, Littke R, Hagedorn-Götz I, Jankowski B (1988) Vorläufige Ergebnisse der organisch-geochemischen und organisch-petrographischen Untersuchungen an Kernproben des Messeler Ölschiefers. In: Franzen JL, Michaelis W (eds.) Der eozäne Messelsee - Eocene Lake Messel. Cour. Forsch-Inst. Senckenberg 107:37–52Google Scholar
  47. Rydin H, Jeglum JK (2013) The biology of peatlands, 2nd edn. Oxford University Press, New YorkCrossRefGoogle Scholar
  48. Sachse VF, Littke R, Heim S, Kluth O, Schober J, Boutib L, Jabour H, Perssen F, Sindern S (2011) Petroleum source rocks of the Tarfaya Basin and adjacent areas, Morocco. Org Geochem 42:209–227CrossRefGoogle Scholar
  49. Sachse VF, Heim S, Jabour H, Kluth O, Schümann T, Aquit M, Littke R (2014) Organic geochemical characterization of Santonian to early Campanian organic matter-rich marls (Sondage No. 1 cores) as related to OAE3 from the Tarfaya Basin, Morocco. Mar Pet Geol 56:290–304CrossRefGoogle Scholar
  50. Scheidt G, Littke R (1989) Comparative organic petrology of interlayered sandstones, siltstones, mudstones and coals in the upper carboniferous Ruhr basin, Northwest Germany, and their thermal history and methane generation. Geol Rundsch 78(1):375–390CrossRefGoogle Scholar
  51. Song J, Littke R, Maquil R, Weniger P (2014) Organic facies variability in the Posidonia black shale from Luxembourg: implications for thermal maturation and depositional environment. Palaeogeogr Palaeoclimatol Palaeoecol 410:316–336CrossRefGoogle Scholar
  52. Staub JR, Esterle JS (1994) Peat-accumulating depositional systems of Sarawak, East Malaysia. Sediment Geol 89:91–106CrossRefGoogle Scholar
  53. Stein R (1991) Accumulation of organic carbon in marine sediments. Springer, BerlinGoogle Scholar
  54. Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C3 and C4 vegetation: carbon cycle implications. Glob Biogeochem Cycles 17(1):6-1–6-14CrossRefGoogle Scholar
  55. Stock AT, Littke R, Lücke A, Zieger L, Thielemann T (2016) Miocene depositional environment and climate in western Europe: the lignite deposits of the lower Rhine Basin, Germany. Int J Coal Geol 15:2–18CrossRefGoogle Scholar
  56. Stock AT, Littke R, Schwarzbauer J, Horsfield B, Hartkopf-Fröder C (2017) Organic geochemistry and petrology of Posidonia shale (Lower Toarcian, Western Europe) – the evolution from immature oil-prone to overmature dry gas-producing kerogen. Int J Coal Geol 176:36–48CrossRefGoogle Scholar
  57. Taylor GH, Liu SY, Diessel CFK (1989) The cold-climate origin of inertinite-rich Gondwana coals. Int J Coal Geol 11:1–22CrossRefGoogle Scholar
  58. Tegelaar EW, De Leeuw JW, Derenne S, Largeau C (1989) A reappraisal of kerogen formation. Geochim Cosmochim Acta 53(11):3103–3106CrossRefGoogle Scholar
  59. Tourtelot HA (1979) Black shale; its deposition and diagenesis. Clay Clay Miner 27(5):313–321CrossRefGoogle Scholar
  60. van Krevelen DW (1961) Coal – typology, chemistry, physics, constitution. Elsevier, AmsterdamGoogle Scholar
  61. Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA (2008) The age of the grasses and clusters of origins of C4 photosynthesis. Glob Chang Biol 14(12):2963–2977CrossRefGoogle Scholar
  62. Waggoner DC, Wozniak AS, Cory RM, Hatcher PG (2017) The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter. Geochim Cosmochim Acta 208:171–184CrossRefGoogle Scholar
  63. Zieger L, Littke R, Schwarzbauer J (2018) Chemical and structural changes in vitrinites and megaspores from carboniferous coals during maturation. Int J Coal Geol 185:91. (in press)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Geology and Geochemistry of Petroleum and Coal, Energy and Mineral Resources GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations