Advertisement

Cuticular Hydrocarbons and Pheromones of Arthropods

  • Gary J. Blomquist
  • Claus Tittiger
  • Russell Jurenka
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Cuticular hydrocarbons and pheromones of insects are often derived from fatty acids and terpenoid lipid components. This chapter describes the chemistry and biochemistry of insect hydrocarbons and pheromones and emphasizes recent work. Cuticular hydrocarbons consist of complex mixtures of straight chain, unsaturated, and methyl-branched components with 21 to 40+ carbon atoms. They function both to restrict water loss to prevent a lethal rate of desiccation and serve in chemical communication in many species. The major volatile insect pheromones consist of modified fatty acids and terpenoids. Many of the lepidopteran pheromones arise from fatty acid precursors, are modified with desaturases, and undergo limited chain shortening or elongation followed by modification of the carboxyl group to produce acetate esters, aldehydes, alcohols, and hydrocarbons. Many coleopteran pheromones are terpenoids, while still other insects use a variety of other compounds. The volatile, long range pheromones produced by insects are often produced in specific glands, and pheromone glands on the abdomen of many lepidopterans produce 10–21 carbon atom pheromone components. In some coleopterans, midgut tissue produces terpenoid pheromones. Recent work on hydrocarbon and pheromone production is taking advantage of the tools of molecular biology to better understand hydrocarbon and pheromone biosynthesis, and this information is summarized.

References

  1. Ando T, Hase T, Arima R, Uchiyama M (1988) Biosynthetic pathway of bombykol, the sex pheromone of the female silkworm moth. Agric Biol Chem 52:473–478Google Scholar
  2. Ando T, Inomata S, Yamamoto M (2004) Lepidopteran sex pheromones. Top Curr Chem 239:51–96PubMedCrossRefPubMedCentralGoogle Scholar
  3. Antony B, Fujii T, Moto K, Matsumoto S, Fukuzawa M, Nakano R, Tatsuki S, Ishikawa Y (2009) Pheromone-gland-specific fatty-acyl reductase in the adzuki bean borer, Ostrinia scapulalis (Lepidoptera: Crambidae). Insect Biochem Mol Biol 39:90–95PubMedCrossRefPubMedCentralGoogle Scholar
  4. Antony B, Soffan A, Jakše J, Alfaifi S, Sutanto KD, Aldosari SA, Aldawood AS, Pain A (2015) Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics 16:532PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arsequell G, Fabriàs G, Camps F (1990) Sex pheromone biosynthesis in the processionary moth Thaumetopoea pityocampa by delta-13 desaturation. Arch Insect Biochem Physiol 14:47–56PubMedCrossRefPubMedCentralGoogle Scholar
  6. Aw T, Schlauch K, Keeling CI, Young S, Bearfield JC, Blomquist GJ, Tittiger C (2010) Functional genomics of the mountain pine beetle (Dendrotonus ponderosae) midguts and fat bodies. BMC Genomics 11:215PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baker GL, Vroman HE, Padmore J (1963) Hydrocarbons of the American cockroach. Biochem Biophys Res Commun 13:360–365CrossRefGoogle Scholar
  8. Balabanidou EA, Kampouraki MacLean M, Blomquist GJ, Tittiger C, Juarez MP, Mijailovsky SJ, Chalepakis G, Anthousi A, Lynd A, Antoine S, Memingway J, Ranson H, Lycett G, Vontas J (2016) Cytochromes P450 associated with insecticide resistance catalyze cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci U S A 113:9268–9273PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barbier J, Lederer E (1960) Structure chémique de la substance royale de la reine d’abeille (Apis mellifica L.). C R Acad Sci Paris 251:1131–1135Google Scholar
  10. Barkawi LS, Francke W, Blomquist GJ, Seybold SJ (2003) Frontalin: de novo synthesis of an aggregation pheromone component by Dendroctonus spp. bark beetles (Coleoptera: Scolytidae). Insect Biochem Mol Biol 33:773–788PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bartelt RJ (1999) Sap beetles. In: Hardie J, Minks AK (eds) Pheromones of non-lepidopteran insects associated with agricultural plants. CAB International, Wallingford, pp 69–89Google Scholar
  12. Bartelt RJ (2010) Volatile hydrocarbon pheromones from beetles. In: Blomquist GJ, Bagneres A-G (eds) Insect hydrocarbons biology, biochemistry and chemical ecology. Cambridge University Press, Cambridge, pp 448–476CrossRefGoogle Scholar
  13. Bartelt RJ, Weisleder D, Dowd PF, Plattner RD (1992) Male-specific tetraene and triene hydrocarbons of Carpophilus hemipterus: structure and pheromonal activity. J Chem Ecol 18:379–402PubMedCrossRefPubMedCentralGoogle Scholar
  14. Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc Natl Acad Sci USA 103:10509–10513PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bello JE, McElfresh S, Millar JG (2015) Isolation and determination of absolute configurations of insect-produced methyl-branched hydrocarbons. Proc Natl Acad Sci USA 112:1077–1082PubMedPubMedCentralCrossRefGoogle Scholar
  16. Berger RS (1966) Isolation, identification, and synthesis of the sex attractant of the cabbage looper, Trichoplusia ni. Ann Entomol Soc Am 59:767–771CrossRefGoogle Scholar
  17. Bestmann HJ, Herrig M, Attygalle AB (1987) Terminal acetylation in pheromone biosynthesis by Mamestra brassicae L. (Lepidoptera: Noctuidae). Experientia 43:1033–1034Google Scholar
  18. Billen J, Morgan ED (1998) Pheromone communication in social insects: sources and secretions. In: Vander Meer RK, Breed MD, Winston ML, Espelie KE (eds) Pheromone communication in social insects. Westview Press, Boulder, pp 3–33Google Scholar
  19. Birgersson G, Byers JA, Bergstrom G, Lofqvist J (1990) Production of pheromone components, chalcogran and methyl (E,Z)-2,4-decadienoate, in the spruce engraver Pityogenes chalcographus. J Insect Physiol 36:391–395CrossRefGoogle Scholar
  20. Bjostad LB, Roelofs WL (1983) Sex pheromone biosynthesis in Trichoplusia ni: key steps involve delta-11 desaturation and chain-shortening. Science 220:1387–1389PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bjostad LB, Roelofs WL (1984) Biosynthesis of sex pheromone components and glycerolipid precursors from sodium [1-14C]acetate in redbanded leafroller moth. J Chem Ecol 10:681–691PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bjostad LB, Wolf WA, Roelofs WL (1987) Pheromone biosynthesis in lepidopterans: desaturation and chain shortening. In: Prestwich GD, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, New York, pp 77–120Google Scholar
  23. Blailock TT, Blomquist GJ, Jackson LL (1976) Biosynthesis of 2-methylalkanes in the cricket Nemobius fasciatus and Gryllus pennsylvanicus. Biochem Biophys Res Commun 68:841–849PubMedCrossRefPubMedCentralGoogle Scholar
  24. Blomquist GJ (2003) Biosynthesis and ecdysteroid regulation of housefly sex pheromone production. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology. Elsevier, San Diego, pp 131–252Google Scholar
  25. Blomquist GJ (2010) Structure and analysis of insect hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology biochemistry and chemical ecology. Cambridge University Press, Cambridge, pp 19–34CrossRefGoogle Scholar
  26. Blomquist GJ, Bagnères A-G (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Blomquist GJ, Howard RW (2003) Pheromone biosynthesis in social insects. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology. Elsevier, New York, pp 323–340CrossRefGoogle Scholar
  28. Blomquist GJ, Kearney GP (1976) Biosynthesis of the internally branched monomethylalkanes in the cockroach Periplaneta fulliginosa. Arch Biochem Biophys 173:546–553PubMedCrossRefPubMedCentralGoogle Scholar
  29. Blomquist GJ, Major MA, Lok JB (1975) Biosynthesis of 3-methylpentacosane in the cockroach Periplaneta americana. Biochem Biophys Res Commun 64:43–50PubMedCrossRefPubMedCentralGoogle Scholar
  30. Blomquist GJ, Howard RW, McDaniel CA, Remaley S, Dwyer LA, Nelson DR (1980) Application of methoxymercuration-demercuration followed by mass spectrometry as a convenient microanalytical technique for double-bond location in insect-derived alkenes. J Chem Ecol 6:257–269CrossRefGoogle Scholar
  31. Blomquist GJ, Guo L, Gu P, Blomquist C, Reitz RC, Reed JR (1994) Methyl-branched fatty acids and their biosynthesis in the housefly, Musca domestica L. (Diptera: Muscidae). Insect Biochem Mol Biol 24:803–810CrossRefGoogle Scholar
  32. Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbot A, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Mol Biol 40:699–712PubMedCrossRefGoogle Scholar
  33. Blount BK, Chibnall AC, Mangouri EI (1937) The wax of the white pine chermes. Biochem J 31:1375–1378PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bordon JH (1985) Aggregation pheromones. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 9. Pergamon Press, Oxford, pp 257–285Google Scholar
  35. Braga MV, Pinto ZT, de Carvatho Queiroz MM, Matsumoto N, Blomquist GJ (2013) Cuticular hydrocarbons as a tool for the identification of insect species: puparial cases from Sarcophagidae. Acta Trop 128:479–485PubMedCrossRefGoogle Scholar
  36. Buček A, Matoušková P, Vogel H, Šebesta P, Jahn U, Weissflog J, Svatos A, Pichová I (2015) Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase. Proc Natl Acad Sci USA 112:12586–12591PubMedPubMedCentralCrossRefGoogle Scholar
  37. Buckner JS (2010) Oxygenated derivatives of hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 187–203CrossRefGoogle Scholar
  38. Butenandt A, Beckmann R, Stamm D, Hecker E (1959) U¨berdem sexual-lockstoff des seidenspinners Bombyx mori: Reindarstellung und konstitution. Z Naturforsch A 14:283–284Google Scholar
  39. Callow RK, Johnston NC (1960) The chemical constitution and synthesis of queen substance of honeybees (Apis mellifera L.). Bee World 41:152–153CrossRefGoogle Scholar
  40. Carlson DA, Nelson DR, Langley PA, Coates TW, Leegwater-Vander Linden ME (1984) Contact sex pheromone in the tsetse fly Glossina pallidipes (Austen): identification and synthesis. J Chem Ecol 10:429–450PubMedCrossRefGoogle Scholar
  41. Carlson DA, Roan C-S, Yost RA (1989) Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Anal Chem 61:1564–1571CrossRefGoogle Scholar
  42. Carlson DA, Offor II, El Messoussi S, Matsyyama K, Mori K, Jallon JM (1998) Sex pheromone of Glossinatachioides: isolation, identification and synthesis. J Chem Ecol 24:1563–1575CrossRefGoogle Scholar
  43. Carot-Sans G, Muñoz L, Piulachs MD, Guerrero A, Rosell G (2015) Identification and characterization of a fatty acyl reductase from a Spodoptera littoralis female gland involved in pheromone biosynthesis. Insect Mol Biol 24:82–92PubMedCrossRefGoogle Scholar
  44. Chase J, Jurenka RA, Schal C, Halarnkar PP, Blomquist GJ (1990) Biosynthesis of methyl branched hydrocarbons in the German cockroach Blattella germanica (L.) (Orthoptera, Blattellidae). Insect Mol Biol 20:149–156Google Scholar
  45. Chertemps T, Duportets L, Labeur C, Udeda R, Takahashi K, Saigo K, Wicker-Thomas C (2007) A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 104:4273–4278PubMedPubMedCentralCrossRefGoogle Scholar
  46. Chibnall AC, Piper SH, Pollard A, Willimas EF, Sahai PN (1934) The constitution of the primary alcohols, fatty acids and paraffins present in plant and insect waxes. Biochem J 28:2189–2208PubMedPubMedCentralCrossRefGoogle Scholar
  47. Choi M-Y, Lim H, Park K-C, Adlof R, Wang S, Zhang A, Jurenka R (2007) Identification and biosynthetic studies of the hydrocarbon sex pheromone in Utetheisa ornatrix (Lepidoptera: Arctiidae). J Chem Ecol 33:1336–1345PubMedCrossRefGoogle Scholar
  48. Chung H, Loehlin DW, Dufour HD, Vaccarro K, Millar JG, Carroll SB (2014) A single gene affects both ecological divergence and mate choice in Drosophila. Science 343:148–151CrossRefGoogle Scholar
  49. Dallerac R, Labeur C, Jallon J-M, Knipple DC, Roelofs WL, Wicker-Thomas C (2000) A 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc Natl Acad Sci USA 97:9449–9454PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dillwith JW, Nelson JH, Pomonis JG, Nelson DR, Blomquist GJ (1982) A 13C NMR study of methyl-branched hydrocarbon biosynthesis in the housefly. J Biol Chem 257:11305–11314PubMedGoogle Scholar
  51. Ding B-J, Löfstedt C (2015) Analysis of the agrotis segetum pheromone gland transcriptome in the light of sex pheromone biosynthesis. BMC Genomics 16:711PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ding B-J, Liénard MA, Wang H-L, Zhao C-H, Löfstedt C (2011) Terminal fatty-acyl-CoA desaturase involved in sex pheromone biosynthesis in the winter moth (Operophtera brumata). Insect Biochem Mol Biol 41:715–722PubMedCrossRefGoogle Scholar
  53. Ding B-J, Hofvander P, Wang H-L, Durrett TP, Stymne S, Löfstedt C (2014) A plant factory for moth pheromone production. Nature Comm 5:3353CrossRefGoogle Scholar
  54. Drijfhout FK (2010) Cuticular hydrocarbons: a new tool in forensic entomology? In: Amendt J, Lee Goff M, Campobasso CP, Grassberger M (eds) Current concepts in forensic entomology. Springer, New York, pp 179–203Google Scholar
  55. Dwyer LA, Blomquist GJ, Nelson JH, Pomonis JG (1981) A 13C-NMR study of the biosynthesis of 3-methylpentacosane in the American cockroach. Biochim Biophys Acta 663:536–544PubMedCrossRefGoogle Scholar
  56. Eliyahu D, Applebaum S, Rafaeli A (2003) Moth sex-pheromone biosynthesis is inhibited by the herbicide diclofop. Pestic Biochem Physiol 77:75–81CrossRefGoogle Scholar
  57. Fang N, Teal PEA, Doolittle RE, Tumlinson JH (1995a) Biosynthesis of conjugated olefinic systems in the sex pheromone gland of female tobacco hornworm moths, Manduca sexta (L.). Insect Biochem Mol Biol 25:39–48CrossRefGoogle Scholar
  58. Fang N, Teal PEA, Tumlinson JH (1995b) Characterization of oxidase(s) associated with the sex pheromone gland in Manduca sexta (L.) females. Arch Insect Biochem Physiol 29:243–257CrossRefGoogle Scholar
  59. Figueroa-Teran R, Welch WH, Blomquist GJ, Tittiger C (2012) Ipsdienol dehydrogenase (IDOLDH): a novel oxidoreductase important for Ips pini pheromone production. Insect Biochem Mol Biol 42:81–90PubMedCrossRefGoogle Scholar
  60. Figueroa-Terany R, Pak H, Blomquist GJ, Tittiger C (2016) High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles. J Biochem 160:141–151PubMedPubMedCentralCrossRefGoogle Scholar
  61. Foster SP, Roelofs WL (1988) Sex pheromone biosynthesis in the leafroller moth Planotortrix excessana by Δ10 desaturation. Arch Insect Biochem Physiol 8:1–9CrossRefGoogle Scholar
  62. Foster SP, Roelofs WL (1990) Biosynthesis of a monoene and a conjugated diene sex pheromone component of the light brown apple moth by E11-desaturation. Experientia 46:269–273CrossRefGoogle Scholar
  63. Foster SP, Roelofs WL (1996) Sex pheromone biosynthesis in the tortricid moth, Ctenopseustis herana (Felder & Rogenhofer). Arch Insect Biochem Physiol 33:135–147CrossRefGoogle Scholar
  64. Francke W, Bartels J, Meyer H, Schroder F, Kohnle U, Baader E, Vite JP (1995) Semiochemicals from bark beetles: new results, remarks, and reflections. J Chem Ecol 21:1043–1063PubMedCrossRefGoogle Scholar
  65. Fukui H, Matsumura F, Barak AV, Burkholder WE (1977) Isolation and identification of a major sexattracting component of Attagenus elongatus (Casey) (Coleoptera: Dermestidae). J Chem Ecol 3:539–548CrossRefGoogle Scholar
  66. Gilg AB, Bearfield JC, Tittiger C, Welch WH, Blomquist GJ (2005) Isolation and functional expression of the first animal geranyl diphosphate synthase and its role in bark beetle pheromone biosynthesis. Proc Natl Acad Sci USA 102:9760–9765PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gilg AB, Tittiger C, Blomquist GJ (2009) Unique animal prenyltransferase with monoterpene synthase activity. Naturwissenschaften 96:731–735PubMedCrossRefGoogle Scholar
  68. Ginzel MD, Blomquist GJ (2016) Insect hydrocarbons: biochemistry and chemical ecology. In: Cohen E, Moussian B (eds) Extracellular matrices in arthropods. Springer, Switzerland, pp 221–252CrossRefGoogle Scholar
  69. Goller S, Szöcs G, Francke W, Schulz S (2007) Biosynthesis of (3Z,6Z,9Z)-3,6,9-octadecatriene: the main component of the pheromone blend of Erannis bajaria. J Chem Ecol 33:1505–1509PubMedCrossRefGoogle Scholar
  70. Gu X, Quilici D, Juarez P, Blomquist GJ, Schal C (1995) Biosynthesis of hydrocarbons and contact sex pheromone and their transport by lipophorin in females of the German cockroach (Blattella germanica). J Insect Physiol 41:257–267CrossRefGoogle Scholar
  71. Gu S-H, Wu K-M, Guo Y-Y, Pickett JA, Field LM, Zhou J-J, Zhang Y-J (2013) Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics 14:636PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hagström ÅK, Liénard MA, Groot AT, Hedenström E, Löfstedt C (2012) Semi–selective fatty acyl reductases from four heliothine moths influence the specific pheromone composition. PLoS One 7:e37230PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hagström ÅK, Albre J, Tooman LK, Thirmawithana AH, Corcoran J, Löfstedt C, Newcomb RD (2013a) A novel fatty acyl desaturase from the pheromone glands of Ctenopseustis obliquana and C. herana with specific Z5-desaturase activity on myristic acid. J Chem Ecol 40:63–70CrossRefGoogle Scholar
  74. Hagström ÅK, Walther A, Wendland J, Löfstedt C (2013b) Subcellular localization of the fatty acyl reductase involved in pheromone biosynthesis in the tobacco budworm, Heliothis virescens (Noctuidae: Lepidoptera). Insect Biochem Mol Biol 43:510–521PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hagström ÅK, Wang H-L, Liénard MA, Lassance J-M, Johansson T, Löfstedt C (2013c) A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory. Microb Cell Factories 12:125CrossRefGoogle Scholar
  76. Hashimoto T (1996) Peroxisomal b-oxidation: enzymology and molecular biology. Ann N Y Acad Sci 804:86–98PubMedCrossRefGoogle Scholar
  77. Howard RW (1993) Cuticular hydrocarbons and chemical communication. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, pp 179–226Google Scholar
  78. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393PubMedCrossRefGoogle Scholar
  79. Islam N, Bacala R, Moore A, Vanderwel D (1999) Biosynthesis of 4-methyl-1-nonanol: female-produced sex pheromone of the yellow mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). Insect Biochem Mol Biol 29:201–208CrossRefGoogle Scholar
  80. Jallon J-M, Wicker-Thomas C (2003) Genetic studies on pheromone production in Drosophila. In: Blomquist GJ, Vogt RG (eds) Insect sex pheromone biochemistry and molecular biology. Elsevier, San Diego, pp 253–281CrossRefGoogle Scholar
  81. Juarez P, Chase J, Blomquist GJ (1992) A microsomal fatty acid synthetase from the integument of Blattella germanica synthesizes methyl-branched fatty acids, precursors to hydrocarbon and contact sex pheromone. Arch Biochem Biophys 293:333–341PubMedCrossRefPubMedCentralGoogle Scholar
  82. Jung CR, Kim Y (2014) Comparative transcriptome analysis of sex pheromone glands of two sympatric lepidopteran congener species. Genomics 103:308–315PubMedCrossRefPubMedCentralGoogle Scholar
  83. Jurenka RA (1997) Biosynthetic pathway for producing the sex pheromone component (Z,E)-9,12-tetradecadienyl acetate in moths involves a Δ12 desaturase. Cell Mol Life Sci 53:501–505PubMedCrossRefPubMedCentralGoogle Scholar
  84. Jurenka RA (2003) Biochemistry of female moth sex pheromones. In: Blomquist GJ, Vogt R (eds) Insect pheromone biochemistry and molecular biology. Elsevier, San Diego, pp 53–80CrossRefGoogle Scholar
  85. Jurenka RA, Roelofs WL (1989) Characterization of the acetyltransferase involved in pheromone biosynthesis in moths: specificity for the Z isomer in Tortricidae. Insect Biochem 19:639–644CrossRefGoogle Scholar
  86. Jurenka RA, Subchev M (2000) Identification of cuticular hydrocarbons and the alkene precursor to the pheromone in hemolymph of the female gypsy moth Lymantria dispar. Arch Insect Biochem Physiol 43:108–115PubMedCrossRefPubMedCentralGoogle Scholar
  87. Jurenka RA, Haynes KF, Adlof RO, Bengtsson M, Roelofs WL (1994) Sex pheromone component ratio in the cabbage looper moth altered by a mutation affecting the fatty acid chain-shortening reactions in the pheromone biosynthetic pathway. Insect Biochem Mol Biol 24:373–381CrossRefGoogle Scholar
  88. Jurenka RA, Subchev M, Abad J-L, Choi M-Y, Fabrias G (2003) Sex pheromone biosynthetic pathway for disparlure in the gypsy moth, Lymantria dispar. Proc Natl Acad Sci USA 100:809–814PubMedPubMedCentralCrossRefGoogle Scholar
  89. Jurenka RA, Blomquist GJ, Schal C, Tittiger C (2017) Biochemistry and molecular biology of pheromone production. Ref Mod Life Sci.  https://doi.org/10.1016/B978-0-12-809633-8.04037-1
  90. Kavanagh K, Jornvall H, Persson B (2008) The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906PubMedPubMedCentralCrossRefGoogle Scholar
  91. Keeling CI, Slessor KN, Higo HA, Winston ML (2003) New components of the honey bee (Apis mellifera L.) queen retinue pheromone. Proc Natl Acad Sci USA 100:4486–4491PubMedPubMedCentralCrossRefGoogle Scholar
  92. Keeling CI, Blomquist GJ, Tittiger C (2004) Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae). Naturwissenschaften 91:324–328PubMedCrossRefPubMedCentralGoogle Scholar
  93. Keeling CI, Bearfield JC, Young S, Blomquist GJ, Tittiger C (2006) Effects of juvenile hormone on gene expression in the pheromone-producing midgut of the pine engraver beetle, Ips pini. Insect Mol Biol 15:207–216PubMedCrossRefPubMedCentralGoogle Scholar
  94. Keeling CI, Chiu CC, Aw T, Li M, Henderson H, Tittiger C, Weng H, Blomquist GJ, Bohlman J (2013) Frontaliln pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases. Proc Natl Acad Sci USA 110:18838–18843PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kiyota R, Arakawa M, Yamakawa R, Yasmin A, Ando T (2011) Biosynthetic pathways of the sex pheromone components and substrate selectivity of the oxidation enzymes working in pheromone glands of the fall webworm, Hyphantria cunea. Insect Biochem Mol Biol 41:362–369PubMedCrossRefPubMedCentralGoogle Scholar
  96. Knipple DC, Roelofs WL (2003) Molecular biological investigations of pheromone desaturases. In: Blomquist GJ, Vogt R (eds) Insect pheromone biochemistry and molecular biology. Elsevier, San Diego, pp 81–106CrossRefGoogle Scholar
  97. Lanne BS, Ivarrson P, Johnsson P, Bergström G, Wassgren A-B (1989) Biosynthesis of 2-methyl-3buten-2-ol, a pheromone component of Ips typographus (Coleoptera: Scolytidae). Insect Biochem 19:163–168CrossRefGoogle Scholar
  98. Lassance J-M, Groot AT, Liénard MA, Antony B, Borgwardt C, Andersson F, Hedenstrom E, Heckel DG, Lofstedt C (2010) Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature 466:486–489PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lassance J-M, Liénard MA, Antonya B, Qian S, Fujii T, Tabata J, Ishikawa Y, Lofstedt C (2013) Functional consequences of sequence variation in the pheromone biosynthetic gene pgFAR for Ostrinia moths. Proc Natl Acad Sci USA 110:3967–3972PubMedPubMedCentralCrossRefGoogle Scholar
  100. Leal WS (1998) Chemical ecology of phytophagous scarab beetles. Annu Rev Entomol 43:39–61PubMedCrossRefPubMedCentralGoogle Scholar
  101. Leal WS, Zarbin PHG, Wojtasek H, Ferreira JT (1999) Biosynthesis of scarab beetle pheromones: enantioselective 8-hydroxylation of fatty acids. Eur J Biochem 259:175–180PubMedCrossRefPubMedCentralGoogle Scholar
  102. Li Z-Q, Zhang S, Luo J-Y, Wang C-Y, Lv L-M, Dong S-L, Cui J-J (2015) Transcriptome comparison of the sex pheromone glands from two sibling Helicoverpa species with opposite sex pheromone components. Sci Rep 5:932Google Scholar
  103. Liénard MA, Hagström ÅK, Lassance J-M, Löfstedt C (2010) Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene. Proc Natl Acad Sci U S A 107:10955–10960PubMedPubMedCentralCrossRefGoogle Scholar
  104. Liénard MA, Wang H-L, Lassance J-M, Löfstedt C (2014) Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana. Nat Commun 5:957CrossRefGoogle Scholar
  105. Löfstedt C, Bengtsson M (1988) Sex pheromone biosynthesis of (E,E)-8,10-dodecadienol in codling moth Cydia pomonella involves E9 desaturation. J Chem Ecol 14:903–915PubMedCrossRefPubMedCentralGoogle Scholar
  106. Löfstedt C, Wahlberg N, Millar JG (2017) Evolutionary patterns of pheromone diversity in Lepidoptera. In: Allison JD, Cardé RT (eds) Pheromone communication in moths: evolution, behavior, and application. University of California Press, Oakland, pp 43–78Google Scholar
  107. Luxova A, Svatos A (2006) Substrate specificity of membrane-bound alcohol oxidase from the tobacco hornworm moth (Manduca sexta) female pheromone glands. J Mol Catal B Enzym 38:37–42CrossRefGoogle Scholar
  108. Ma PWK, Ramaswamy SB (2003) Biology and ultrastructure of sex pheromone producing tissue. In: Blomquist GJ, Vogt R (eds) Insect pheromone biochemistry and molecular biology. Elsevier, San Diego, pp 19–51CrossRefGoogle Scholar
  109. Martin D, Bohlmann J, Gershenzon J, Francke W, Seybold SJ (2003) A novel sex-specific and inducible monoterpene synthase activity associated with a pine bark beetle, the pine engraver, Ips pini. Naturwissenschaften 90:173–179PubMedGoogle Scholar
  110. Martinez T, Fabria’s G, Camps F (1990) Sex pheromone biosynthetic pathway in Spodoptera littoralis and its activation by a neurohormone. J Biol Chem 265:1381–1387PubMedGoogle Scholar
  111. Matouskova P, Pichova I, Svatos A (2007) Functional characterization of a desaturase from the tobacco hornworm moth (Manduca sexta) with bifunctional Z11- and 10,12-desaturase activity. Insect Biochem Mol Biol 37:601–610PubMedCrossRefGoogle Scholar
  112. Matsumoto S (2010) Molecular mechanisms underlying sex pheromone production in moths. Biosci Biotechnol Biochem 74:223–231PubMedCrossRefPubMedCentralGoogle Scholar
  113. Matsumoto S, Hull J, Ohnishi A, Moto KI, Fonagy A (2007) Molecular mechanisms underlying sex pheromone production in the silkmoth, Bombyx mori: characterization of the molecular components involved in bombykol biosynthesis. J Insect Physiol 53:752–759PubMedCrossRefPubMedCentralGoogle Scholar
  114. Millar JG (2010) Polyene hydrocarbons, epoxides, and related compounds as components of lepidopteran pheromone blends. In: Blomquist GJ, Bagnères A-G (eds) Hydrocarbon: biology biochemistry and chemical ecology. Cambridge University Press, Cambridge, pp 390–447CrossRefGoogle Scholar
  115. Morse D, Meighen EA (1987a) Biosynthesis of the acetate ester precursors of the spruce budworm sex pheromone by an acetyl CoA: fatty alcohol acetyltransferase. Insect Biochem 17:53–59CrossRefGoogle Scholar
  116. Morse D, Meighen EA (1987b) Pheromone biosynthesis: enzymatic studies in lepidoptera. In: Prestwich G, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, Orlando, pp 121–158Google Scholar
  117. Moto K, Yoshiga T, Yamamoto M, Takahashi S, Okano K, Ando T, Nakata T, Matsumoto S (2003) Pheromone gland specific fatty-acyl reductase of the silk moth. Bombyx mori. Proc Natl Acad Sci USA 100:9156–9161PubMedPubMedCentralCrossRefGoogle Scholar
  118. Nadeau J, Petereit J, Tillett RJ, Jung K, Fotoohi M, MacLean M, Young S, Schlauch K, Blomquist GJ, Tittiger C (2017) Compartive transcriptomics of mountain pine beetle heromone-biosynthetic tissues and functional analysis of CYP6DE3. BMC Genomics 18(1):1–15Google Scholar
  119. Nelson DR, Sukkestad DR (1970) Normal and branched aliphatic hydrocarbons from the eggs of the tobacco hornworm. Biochemist 9:4601–4610CrossRefGoogle Scholar
  120. Nesnerova P, Sebek P, Macek T, Svatos A (2004) First semi-synthetic preparation of sex pheromones. Green Chem 6:305–307CrossRefGoogle Scholar
  121. Ohnishi A, Hull JJ, Matsumoto S (2006) Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc Natl Acad Sci USA 103:4398–4403PubMedPubMedCentralCrossRefGoogle Scholar
  122. Ono A, Imai T, Inomata S-I, Watanabe A, Ando T (2002) Biosynthetic pathway for production of a conjugated dienyl sex pheromone of a plusiinae moth, Thysanoplusia intermixta. Insect Biochem Mol Biol 32:701–708PubMedCrossRefPubMedCentralGoogle Scholar
  123. Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause RA, Lyons SK, McClain CR, McShea D, Navack-Gottshall PM (2009) Two phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci USA 106:24–27PubMedCrossRefPubMedCentralGoogle Scholar
  124. Percy-Cunningham JE, MacDonald JA (1987) Biology and ultrastructure of sex pheromone-producing glands. In: Prestwich G, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, Orlando, pp 27–75Google Scholar
  125. Petroski RJ, Bartelt RJ, Weisleder D (1994) Biosynthesis of (2E,4E,6E)-5 ethyl-3-methyl-2,4,6-nonatriene: the aggregation pheromone of Carpophilus freemani (Coleoptera: Nitidulidae). Insect Biochem Mol Biol 24:69–78CrossRefGoogle Scholar
  126. Pierce HD, Conn JE, Oehlschlager AC, Borden JH (1987) Monoterpene metabolism in female mountain pine beetles, Dendroctonus ponderosae Hopkins, attacking ponderosa pine. J Chem Ecol 13:1455–1480PubMedCrossRefPubMedCentralGoogle Scholar
  127. Plettner E, Slessor KN, Winston ML, Oliver JE (1996) Caste-selective pheromone biosynthesis in honeybees. Science 271:1851–1853CrossRefGoogle Scholar
  128. Plettner E, Slessor KN, Winston ML (1998) Biosynthesis of mandibular acids in honeybees (Apis mellifera): de novo synthesis, route of fatty acid hydroxylation and caste selective b-oxidation. Insect Biochem Mol Biol 28:31–42CrossRefGoogle Scholar
  129. Prestwich GD, Blomquist GJ (1987) Pheromone biochemistry. Academic Press, OrlandoGoogle Scholar
  130. Pureswaran DS, Gries R, Borden JH, Pierce HD Jr (2000) Dynamics of pheromone production and communication in the mountain pine beetle, Dendroctonus ponderosae Hopkins and the pine engraver, Ips pini (say) (Coleoptera: Scolytidae). Chemoecology 10:153–168CrossRefGoogle Scholar
  131. Qiu Y, Tittiger C, Wicker-Thamas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Tauet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decabonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci USA 109:14858–14863PubMedPubMedCentralCrossRefGoogle Scholar
  132. Quennedey A (1998) Insect epidermal gland cells: ultraxtructure and morphogenesis. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol 11A. Wiley–Liss, New York, pp 177–207Google Scholar
  133. Rafaeli A, Jurenka RA (2003) PBAN regulation of pheromone biosynthesis in female moths. In: Blomquist GJ, Vogt R (eds) Insect pheromone biochemistry and molecular biology. Elsevier, San Diego, pp 107–136CrossRefGoogle Scholar
  134. Reed JR, Vanderwel D, Choi S, Pomonis JG, Reitz RC, Blomquist GJ (1994) Unusual mechanism of hydrocarbon formation in the housefly: cytochrome P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2. Proc Natl Acad Sci USA 91:10000–10004PubMedPubMedCentralCrossRefGoogle Scholar
  135. Reed JR, Quilici DR, Blomquist GJ, Reitz RC (1995) Proposed mechanism for the cytochrome P450-catalyzed conversion of aldehydes to hydrocarbons in the house fly, Musca domestica. Biochemistry 34:16221–16227PubMedCrossRefGoogle Scholar
  136. Roelofs WL, Wolf WA (1988) Pheromone biosynthesis in Lepidoptera. J Chem Ecol 14:2019–2031PubMedCrossRefGoogle Scholar
  137. Romer F (1991) The oenocytes of insects: differentiation, changes during molting, and their possible involvement in the secretion of moulting hormone. In: Gupta A (ed) Morphogenetic hormones of arthropods, vol 3. Rutgers University Press. New Brunswick, NJ, pp 542–566Google Scholar
  138. Rule GS, Roelofs WL (1989) Biosynthesis of sex pheromone components from linolenic acid in arctiid moths. Arch Insect Biochem Physiol 12:89–97CrossRefGoogle Scholar
  139. Sandstrom P, Welch WH, Blomquist GJ, Tittiger C (2006) Functional expression of a bark beetle cytochrome P450 that hydroxylates myrcene to ipsdienol. Insect Biochem Mol Biol 36:835–845PubMedCrossRefGoogle Scholar
  140. Sandstrom P, Ginzel MD, Bearfield JC, Welch WH, G J Blomquist GJ, Tittiger C (2008) Myrcene hydroxylases do not determine enantiomeric composition of pheromonal ipsdienol in Ips spp. J Chem Ecol 34:584–592CrossRefGoogle Scholar
  141. Schal C, Sevala VL, Young HP, Bachmann JAS (1998) Synthesis and transport of hydrocarbons: cuticle and ovary as target tissues. Am Zool 38:382–393CrossRefGoogle Scholar
  142. Schal C, Fan Y, Blomquist GJ (2003) Regulation of pheromone biosynthesis, transport and emission in cockroaches. In: Blomquist G, Vogt R (eds) Insect pheromone biochemistry and molecular biology. Elsevier, San Diego, pp 283–322CrossRefGoogle Scholar
  143. Schlyter F, Birgersson GS (1999) Forest beetles. In: Hardie J, Minks AK (eds) Pheromones of non-lepidopteran insects associated with agricultural plants. CAB International, Wallingford, pp 113–148Google Scholar
  144. Seybold SJ, Ohtsuka T, Wood DL, Kubo I (1995) Enantiomeric composition of ipsdienol - a chemotaxonomic character for North-American populations of Ips spp in the pini subgenerec group (Coleoptera, Scolytidae). J Chem Ecol 21:995–1016PubMedCrossRefPubMedCentralGoogle Scholar
  145. Seybold SJ, Vanderwel D (2003) Biosynthesis and endocrine regulation of pheromone production in the Coleoptera. In: Blomquist GJ, Vogt R (eds) Insect pheromone biochemistry and molecular biochemistry. Elsevier, San Diego, CA, pp 137–200CrossRefGoogle Scholar
  146. Seybold SJ, Bohlmann J, Raffa KF (2000) Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids: evolutionary perspective and synthesis. Can Entomol 132:697–753CrossRefGoogle Scholar
  147. Silverstein RM, Rodin JO, Wood DL (1966) Sex attractants in frass produced by male Ips confusus in ponderosa pine. Science 154:509–510CrossRefGoogle Scholar
  148. Song M, Gorzalski A, Nguyen TT, Liu X, Jeffrey C, Blomquist GJ, Tittiger C (2014) exo-Brevicomin biosynthesis in the fat body of the mountain pine beetle, Dendroctonus ponderosae. J Chem Ecol 40:181–189PubMedCrossRefGoogle Scholar
  149. Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, deRenobales M (1988) Fatty acids in insects: composition, metabolism and biological significance. Arch Insect Biochem Physiol 9:1–33CrossRefGoogle Scholar
  150. Strandh M, Johansson T, Ahren D, Löfstedt C (2008) Transcriptional analysis of the pheromone gland of the turnip moth, Agrotis segetum (Noctuidae), reveals candidate genes involved in pheromone production. Insect Mol Biol 17:73–85PubMedCrossRefGoogle Scholar
  151. Strandh M, Johansson T, Löfstedt C (2009) Global transcriptional analysis of pheromone biosynthesis-related genes in the female turnip moth, Agrotis segetum (Noctuidae) using a custom-made cDNA microarray. Insect Biochem Mol Biol 39:484–489PubMedCrossRefGoogle Scholar
  152. Subchev M, Jurenka RA (2001) Identification of the pheromone in the hemolymph and cuticular hydrocarbons from the moth Scoliopteryx libatrix L. (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol 47:35–43PubMedCrossRefGoogle Scholar
  153. Tang JD, Charlton RE, Jurenka RA, Wolf WA, Phelan PL, Sreng L, Roelofs WL (1989) Regulation of pheromone biosynthesis by a brain hormone in two moth species. Proc Natl Acad Sci USA 86:1806–1810PubMedPubMedCentralCrossRefGoogle Scholar
  154. Teal PEA, Tumlinson JH (1987) The role of alcohols in pheromone biosynthesis by two noctuid moths that use acetate pheromone components. Arch Insect Biochem Physiol 4:261–269CrossRefGoogle Scholar
  155. Teal PEA, Tumlinson JH (1988) Properties of cuticular oxidases used for sex pheromone biosynthesis by Heliothis zea. J Chem Ecol 14:2131–2145PubMedCrossRefGoogle Scholar
  156. Teerawanichpan P, Robertson AJ, Qiu X (2010) A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochem Mol Biol 40:641–649PubMedCrossRefGoogle Scholar
  157. Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ (1999) Insect pheromones: an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol 29:481–514PubMedCrossRefGoogle Scholar
  158. Tittiger C (2003) Molecular biology of bank beetle pheromone production and endocrine regulation. In: Blomquist GJ, Vogt RG (eds) Insect biochemistry and molecular biology. Elsevier, San Diego, pp 201–230CrossRefGoogle Scholar
  159. Tittiger C, Blomquist GJ (2016) Pheromone production in pine bark beetles. Adv Insect Physiol 50:235–263CrossRefGoogle Scholar
  160. Tittiger C, Blomquist GJ, Ivarsson P, Borgeson CE, Seybold SJ (1999) Juvenile hormone regulation of HMG-R gene expression in the bark beetle Ips paraconfusus (Coleoptera: Scolytidae): implications for male aggregation pheromone biosynthesis. Cell Mol Life Sci 55:121–127PubMedCrossRefGoogle Scholar
  161. Vanderwel D (1994) Factors affecting pheromone production in beetles. Arch Insect Biochem Physiol 25:347–362CrossRefGoogle Scholar
  162. Vanderwel D, Oehlschlager AC (1987) Biosynthesis of pheromones and endocrine regulation of pheromone production in Coleoptera. In: Prestwich GD, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, Orlando, pp 175–215Google Scholar
  163. Vaz AH, Blomquist GJ, Reitz RC (1988) Characterization of the fatty acyl elongation reactions involved in hydrocarbon biosynthesis in the housefly, Musca domestica L. Insect Biochem 18:177–184CrossRefGoogle Scholar
  164. Vioque J, Kolattukudy PE (1997) Resolultion and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L). Arch Biochem Biophys 340:64–72PubMedCrossRefGoogle Scholar
  165. Vogel H, Heidel A, Heckel D, Groot A (2010) Transcriptome analysis of the sex pheromone gland of the noctuid moth Heliothis virescens. BMC Genomics 11:29PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wang H-L, Liénard MA, Zhao C-H, Wang C-Z, Löfstedt C (2010a) Neofunctionalization in an ancestral insect desaturase lineage led to rare Δ6 pheromone signals in the Chinese tussah silkworm. Insect Biochem Mol Biol 40:742–751PubMedCrossRefGoogle Scholar
  167. Wang H-L, Zhao C-H, Millar J, Cardé R, Löfstedt C (2010b) Biosynthesis of unusual moth pheromone components involves two different pathways in the navel orangeworm, Amyelois transitella. J Chem Ecol 36:535–547PubMedPubMedCentralCrossRefGoogle Scholar
  168. Wang H-L, Zhao C-H, Szöcs G, Chinta S, Schulz S, Löfstedt C (2013) Biosynthesis and PBAN-regulated transport of pheromone polyenes in the winter moth, Operophtera brumata. J Chem Ecol 39:790–796PubMedCrossRefGoogle Scholar
  169. Wheeler CA, Cardé RT (2014) Following in their footprints: cuticular hydrocarbons as overwintering aggregation site markers in Hippodamia convergens. J Chem Ecol 40:418–428PubMedCrossRefGoogle Scholar
  170. Wicker-Thomas C, Chertemps T (2010) Molecular biology and genetics of hydrocarbon production. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology biochemistry and chemical ecology. Cambridge University Press, Cambridge, pp 53–74CrossRefGoogle Scholar
  171. Wicker-Thomas C, Garrido D, Bontonou G, Napal L, Mazuras N, Denis B, Rubin T, Parvy J-P, Montagne J (2015) Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster. J Lipid Res 56:2094–2101PubMedPubMedCentralCrossRefGoogle Scholar
  172. Xia Y-H, Zhang Y-N, Hou X-Q, Li F, Dong S-L (2015) Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor-pheromone glands of Chilo suppressalis. Sci Rep 5:7888PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zhang Y-N, Xia Y-H, Zhu J-Y, Li S-Y, Dong S-L (2014) Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker). J Chem Ecol 40:439–451PubMedCrossRefGoogle Scholar
  174. Zhao C, Löfstedt C, Wang X (1990) Sex pheromone biosynthesis in the Asian corn borer Ostrinia furnicalis 2. Biosynthesis of (E) and (Z)-12-tetradecenyl acetate involves Δ14 desaturation. Arch Insect Biochem Physiol 15:57–65CrossRefGoogle Scholar

Relevant Website

  1. Database of Pheromones and Semiochemicals. http://www.pherobase.com/Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gary J. Blomquist
    • 1
  • Claus Tittiger
    • 1
  • Russell Jurenka
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of NevadaRenoUSA
  2. 2.Department of EntomologyIowa State UniversityAmesUSA

Personalised recommendations