The Anti-inflammatory Properties of Food Polar Lipids

  • Ronan Lordan
  • Constantina Nasopoulou
  • Alexandros Tsoupras
  • Ioannis ZabetakisEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Cardiovascular diseases (CVD) are the leading cause of death globally. Inflammation is central to the pathology of CVD and is present throughout the atherosclerotic process. Unresolved inflammation can lead to atherosclerosis and the subsequent development of CVD that can cause a major cardiovascular event. Lifestyle and nutrition are modifiable risk factors for the prevention of CVD. Research shows that some dietary patterns, such as the Mediterranean diet, are associated with a decreased risk of CVD. Polar lipids, which are found in abundance in foods of the Mediterranean diet, are lipids that possess potent anti-inflammatory and antithrombotic effects against the actions of platelet-activating factor (PAF). PAF is potent phospholipid mediator of inflammation that plays a significant role in all stages of atherosclerosis. Bioactive lipids present in various foods can inhibit the pro-inflammatory activities of PAF via their effects on the PAF/PAF receptor (PAF-R) signaling but also via modulating PAF metabolism toward homeostasis. This chapter reviews the relevant research pertaining to the anti-inflammatory and cardioprotective properties of polar lipids in various foods.


Polar lipids Inflammation Platelet-activating factor Cardiovascular disease Mediterranean diet 



Coronary heart disease


C-Reactive protein


Cardiovascular disease


Fatty acids


High-density lipoprotein cholesterol


Ischemic heart disease




Low-density lipoprotein cholesterol


Lyso-PAF acetyltransferases


Milk fat globule membrane


Myocardial infarction


Platelet-activating factor


PAF acetylhydrolase




Platelet-activating factor receptor










Reactive oxygen species


Saturated fatty acids





The authors would like to thank the Department of Biological Sciences, University of Limerick, Limerick, Ireland, for their continued support.


  1. 1.
    Nicholson SK, Tucker GA, Brameld JM (2008) Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc 67:42–47CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wilkins E, Wilson L, Wickramasinghe K et al (2017) European cardiovascular disease statistics 2017. European Heart Network, BrusselsGoogle Scholar
  3. 3.
    Lordan R, Zabetakis I (2017) Invited review: the anti-inflammatory properties of dairy lipids. J Dairy Sci 100:4197–4212CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Libby P, Ridker PM, Hansson GK (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54:2129–2138CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tsoupras A, Lordan R, Zabetakis I (2018) Inflammation, not cholesterol, is a cause of chronic disease. Nutrients 10:604CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Mozaffarian D, Appel LJ, Van Horn L (2011) Components of a cardioprotective diet new insights. Circulation 123:2870–2891CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Menotti A, Puddu PE, Lanti M et al (2014) Lifestyle habits and mortality from all and specific causes of death: 40-year follow-up in the Italian Rural Areas of the Seven Countries Study. J Nutr Health Aging 18:314–321CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stampfer MJ, Hu FB, Manson JE et al (2000) Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med 343:16–22CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sanches Machado d’Almeida K, Ronchi Spillere S, Zuchinali P et al (2018) Mediterranean diet and other dietary patterns in primary prevention of heart failure and changes in cardiac function markers: a systematic review. Nutrients 10, 58Google Scholar
  10. 10.
    Martínez-González MA, Salas-Salvadó J, Estruch R et al (2015) Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog Cardiovasc Dis 58:50–60CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Estruch M, Sanchez-Quesada J, Beloki L et al (2013) The induction of cytokine release in monocytes by electronegative low-density lipoprotein (LDL) is related to its higher ceramide content than native LDL. Int J Mol Sci 14:2601CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Panagiotakos DB, Notara V, Kouvari M et al (2016) The Mediterranean and other dietary patterns in secondary cardiovascular disease prevention: a review. Curr Vasc Pharmacol 14:442–451CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    de Lorgeril M (2013) Mediterranean diet and cardiovascular disease: historical perspective and latest evidence. Curr Atheroscler Rep 15:370CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shen J, Wilmot KA, Ghasemzadeh N et al (2015) Mediterranean dietary patterns and cardiovascular health. Annu Rev Nutr 35:425–449CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nasopoulou C, Zabetakis I (2015) Marine oils and inflammation. In: Zabetakis I (ed) Marine oils: from sea to pharmaceuticals. Nova Science Publishers, New York, p 179Google Scholar
  16. 16.
    Ravnskov U, Diamond DM, Hama R et al (2016) Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: a systematic review. BMJ 6:e010401Google Scholar
  17. 17.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Herder C, de las Heras Gala T, Carstensen-Kirberg M et al (2017) Circulating levels of interleukin 1-receptor antagonist and risk of cardiovascular disease: meta-analysis of six population-based cohorts. Arterioscler Thromb Vasc Biol 37:1222CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Welsh P, Grassia G, Botha S et al (2017) Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect? Br J Pharmacol 174:3898CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Woodward M, Rumley A, Welsh P et al (2007) A comparison of the associations between seven hemostatic or inflammatory variables and coronary heart disease. J Thromb Haemost 5:1795–1800CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Welsh P, Murray HM, Ford I et al (2011) Circulating interleukin-10 and risk of cardiovascular events. Arterioscler Thromb Vasc Biol 31:2338CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    The Emerging Risk Factors Collaboration (2012) C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 367:1310–1320CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Moss JW, Ramji DP (2016) Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets. Future Med Chem 8:1317–1330CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Capra V, Bäck M, Barbieri SS et al (2013) Eicosanoids and their drugs in cardiovascular diseases: focus on atherosclerosis and stroke. Med Res Rev 33:364–438CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688CrossRefGoogle Scholar
  27. 27.
    Spite M, Serhan CN (2010) Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res 107:1170–1184CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Serhan CN (2014) Novel pro-resolving lipid mediators in inflammation are leads for resolution physiology. Nature 510:92–101CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Buckley Christopher D, Gilroy Derek W, Serhan Charles N (2014) Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40:315–327CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Norris PC, Dennis EA (2012) Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proc Natl Acad Sci USA 109:8517–8522CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Aung T, Halsey J, Kromhout D et al (2018) Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol 3:225–234CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lordan R, Tsoupras A, Zabetakis I (2017) Phospholipids of animal and marine origin: structure, function, and anti-inflammatory properties. Molecules 22:1964CrossRefGoogle Scholar
  33. 33.
    Schwingshackl L, Hoffmann G (2014) Mediterranean dietary pattern, inflammation and endothelial function: a systematic review and meta-analysis of intervention trials. Nutr Metab Cardiovasc Dis 24:929–939CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Demopoulos C, Pinckard R, Hanahan DJ (1979) Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem 254:9355–9358PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ishii S, Shimizu T (2000) Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res 39:41–82CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Honda Z, Ishii S, Shimizu T (2002) Platelet-activating factor receptor. J Biochem 131:773–779CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Palur Ramakrishnan AVK, Varghese TP, Vanapalli S et al (2017) Platelet activating factor: a potential biomarker in acute coronary syndrome? Cardiovasc Ther 35:64–70CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Verouti SN, Tsoupras AB, Alevizopoulou F et al (2013) Paricalcitol effects on activities and metabolism of platelet activating factor and on inflammatory cytokines in hemodialysis patients. Int J Artif Organs 36:87–96CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Clay KL, Johnson C, Worthen GS (1991) Biosynthesis of platelet activating factor and 1-O-acyl analogues by endothelial cells. Biochim Biophys Acta 1094:43–50CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tordai A, Franklin RA, Johnson C et al (1994) Autocrine stimulation of B lymphocytes by a platelet-activating factor receptor agonist, 1-palmitoyl-2-acetyl-sn-glycero-3-phosphocholine. J Immunol 152:566–573PubMedPubMedCentralGoogle Scholar
  41. 41.
    Castro Faria Neto HC, Stafforini DM, Prescott SM et al (2005) Regulating inflammation through the anti-inflammatory enzyme platelet-activating factor-acetylhydrolase. Mem Inst Oswaldo Cruz 100:83–91CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yost CC, Weyrich AS, Zimmerman GA (2010) The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie 92:692–697CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Demopoulos CA, Karantonis HC, Antonopoulou S (2003) Platelet activating factor – a molecular link between atherosclerosis theories. Eur J Lipid Sci Technol 105:705–716CrossRefGoogle Scholar
  44. 44.
    Tsoupras AB, Iatrou C, Frangia C et al (2009) The implication of platelet activating factor in cancer growth and metastasis: potent beneficial role of PAF-inhibitors and antioxidants. Infect Disord Drug Targets (Formerly Current Drug Targets-Infectious Disorders) 9:390–399Google Scholar
  45. 45.
    Melnikova V, Bar-Eli M (2007) Inflammation and melanoma growth and metastasis: the role of platelet-activating factor (PAF) and its receptor. Cancer Metastasis Rev 26:359CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Reznichenko A, Korstanje R (2015) The role of platelet-activating factor in mesangial pathophysiology. Am J Pathol 185:888–896CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Braquet P, Hosford D, Braquet M et al (1989) Role of cytokines and platelet-activating factor in microvascular immune injury. Int Arch Allergy Immunol 88:88–100CrossRefGoogle Scholar
  48. 48.
    Ocana JA, Romer E, Sahu R et al (2018) Platelet-activating factor–induced reduction in contact hypersensitivity responses is mediated by mast cells via cyclooxygenase-2–dependent mechanisms. J Immunol 200:4004CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Koltai M, Hosford D, Guinot P et al (1991) Platelet activating factor (PAF). A review of its effects, antagonists and possible future clinical implications (Part I). Drugs 42:9–29CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Koltai M, Hosford D, Guinot P et al (1991) PAF. A review of its effects, antagonists and possible future clinical implications (Part II). Drugs 42:174–204CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Negro Alvarez JM, Miralles Lopez JC, Ortiz Martinez JL et al (1997) Platelet-activating factor antagonists. Allergol Immunopathol 25:249–258Google Scholar
  52. 52.
    Singh P, Singh IN, Mondal SC et al (2013) Platelet-activating factor (PAF)-antagonists of natural origin. Fitoterapia 84:180–201CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Feige E, Mendel I, George J et al (2010) Modified phospholipids as anti-inflammatory compounds. Curr Opin Lipidol 21:525–529CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Papakonstantinou VD, Lagopati N, Tsilibary EC et al (2017) A review on platelet activating factor inhibitors: could a new class of potent metal-based anti-inflammatory drugs induce anticancer properties? Bioinorg Chem Appl 2017:6947034CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Marathe GK, Prescott SM, Zimmerman GA et al (2001) Oxidized LDL contains inflammatory PAF-like phospholipids. Trends Cardiovasc Med 11:139–142CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Snyder F (1985) Chemical and biochemical aspects of platelet activating factor: a novel class of acetylated ether-linked choline-phospholipids. Med Res Rev 5:107–140CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Snyder F (1995) Platelet-activating factor and its analogs: metabolic pathways and related intracellular processes. Biochim Biophys Acta 1254:231–249CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Snyder F, Fitzgerald V, Blank ML (1996) Biosynthesis of platelet-activating factor and enzyme inhibitors. In: Nigam S, Kunkel G, Prescott SM (eds) Platelet-activating factor and related lipid mediators 2: roles in health and disease. Springer US, Boston, pp 5–10CrossRefGoogle Scholar
  59. 59.
    Shindou H, Hishikawa D, Harayama T et al (2009) Recent progress on acyl CoA: lysophospholipid acyltransferase research. J Lipid Res 50:S46–S51CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Imaizumi TA, Stafforini DM, Yamada Y et al (1995) Platelet-activating factor: a mediator for clinicians. J Intern Med 238:5–20CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Tsoupras AB, Fragopoulou E, Nomikos T et al (2007) Characterization of the de novo biosynthetic enzyme of platelet activating factor, DDT-insensitive cholinephosphotransferase, of human mesangial cells. Mediat Inflamm 2007:27683CrossRefGoogle Scholar
  62. 62.
    Tsoupras AB, Chini M, Mangafas N et al (2011) Platelet-activating factor and its basic metabolic enzymes in blood of naive HIV-infected patients. Angiology 63:343–352. Scholar
  63. 63.
    Tsoupras AB, Chini M, Mangafas N et al (2012) Platelet-activating factor and its basic metabolic enzymes in blood of naive HIV-infected patients. Angiology 63:343–352CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nasopoulou C, Tsoupras AB, Karantonis HC et al (2011) Fish polar lipids retard atherosclerosis in rabbits by down-regulating PAF biosynthesis and up-regulating PAF catabolism. Lipids Health Dis 10:1–18CrossRefGoogle Scholar
  65. 65.
    Detopoulou P, Nomikos T, Fragopoulou E et al (2009) Platelet activating factor (PAF) and activity of its biosynthetic and catabolic enzymes in blood and leukocytes of male patients with newly diagnosed heart failure. Clin Biochem 42:44–49CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Papakonstantinou VD, Chini M, Mangafas N et al (2014) In vivo effect of two first-line ART regimens on inflammatory mediators in male HIV patients. Lipids Health Dis 13:90–90CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Marathe GK, Zimmerman GA, Prescott SM et al (2002) Activation of vascular cells by PAF-like lipids in oxidized LDL. Vasc Pharmacol 38:193–200CrossRefGoogle Scholar
  68. 68.
    Stafforini DM (2009) Biology of platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein associated phospholipase A2). Cardiovasc Drugs Ther 23:73–83CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Karasawa K, Inoue K (2015) Overview of PAF-degrading enzymes. Enzymes 38:1–22CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Stafforini DM, Zimmerman GA (2014) Unraveling the PAF-AH/Lp-PLA(2) controversy. J Lipid Res 55:1811–1814CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tellis CC, Tselepis A (2014) Pathophysiological role and clinical significance of lipoprotein-associated phospholipase A2 (Lp-PLA2) bound to LDL and HDL. Curr Pharm Des 20:6256–6269CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Appleyard CB, Hillier K (1995) Biosynthesis of platelet-activating factor in normal and inflamed human colon mucosa: evidence for the involvement of the pathway of platelet-activating factor synthesis de novo in inflammatory bowel disease. Clin Sci 88:713–717CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Detopoulou P, Nomikos T, Fragopoulou E et al (2013) Platelet activating factor in heart failure: potential role in disease progression and novel target for therapy. Curr Heart Fail Rep 10:122–129CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Detopoulou P, Fragopoulou E, Nomikos T et al (2012) Baseline and 6-week follow-up levels of PAF and activity of its metabolic enzymes in patients with heart failure and healthy volunteers – a pilot study. Angiology 64:522–528CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Vance JE, Vance DE (2008) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Oxford, UKGoogle Scholar
  76. 76.
    Andreyev AY, Fahy E, Guan Z et al (2010) Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 51:2785–2797CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Quehenberger O, Armando AM, Brown AH et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51:3299–3305CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Dowhan W, Bogdanov M, Mileykovskaya E (2008) Functional roles of lipids in membranes. In: Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 1–37Google Scholar
  79. 79.
    Paradies G, Petrosillo G, Paradies V et al (2010) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 48:297–310CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Yin H, Zhu M (2012) Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases. Free Radic Res 46:959–974CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Musatov A, Robinson NC (2012) Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res 46:1313–1326CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Sioriki E, Smith TK, Demopoulos CA et al (2016) Structure and cardioprotective activities of polar lipids of olive pomace, olive pomace-enriched fish feed and olive pomace fed gilthead sea bream (Sparus aurata). Food Res Int 83:143–151CrossRefGoogle Scholar
  83. 83.
    Nasopoulou C, Smith T, Detopoulou M et al (2014) Structural elucidation of olive pomace fed sea bass (Dicentrarchus labrax) polar lipids with cardioprotective activities. Food Chem 145:1097–1105CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Minihane AM, Vinoy S, Russell WR et al (2015) Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr 114:999–1012CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Galland L (2010) Diet and inflammation. Nutr Clin Pract 25:634–640CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Shivappa N, Bonaccio M, Hebert JR et al (2018) Association of pro-inflammatory diet with low-grade inflammation: results from the Moli-sani study. Nutrition 54:182CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    O’Keefe JH, Gheewala NM, O’Keefe JO (2008) Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol 51:249–255CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    de Koning EJP, Rabelink TJ (2002) Endothelial function in the post-prandial state. Atheroscler Suppl 3:11–16CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Hyson D, Rutledge JC, Berglund L (2003) Postprandial lipemia and cardiovascular disease. Curr Atheroscler Rep 5:437–444CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Jansen F, Yang X, Franklin BS et al (2013) High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 98:94–106CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Shrestha C, Ito T, Kawahara K et al (2013) Saturated fatty acid palmitate induces extracellular release of histone H3: a possible mechanistic basis for high-fat diet-induced inflammation and thrombosis. Biochem Biophys Res Commun 437:573–578CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Bessueille L, Magne D (2015) Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol Life Sci 72:2475–2489CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Nathan C (2002) Points of control in inflammation. Nature 420:846–852CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Le Gouic AV, Harnedy PA, FitzGerald RJ (2018) Bioactive peptides from fish protein by-products. In: Mérillon J-M, Ramawat KG (eds) Bioactive molecules in food. Springer International Publishing, Cham, pp 1–35Google Scholar
  95. 95.
    Renzella J, Townsend N, Jewell J et al (2018) What national and subnational interventions and policies based on Mediterranean and Nordic diets are recommended or implemented in the WHO European Region, and is there evidence of effectiveness in reducing noncommunicable diseases? World Health Organization, WHO Regional Office for Europe, CopenhagenGoogle Scholar
  96. 96.
    de Lorgeril M, Salen P, Martin JL et al (1999) Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 99:779–785CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Knoops KT, de Groot LC, Kromhout D et al (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA 292:1433–1439CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Lerner A, Matthias T (2015) Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 14:479–489CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Rauber F, da Costa Louzada ML, Steele E et al (2018) Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients 10:587CrossRefPubMedCentralGoogle Scholar
  100. 100.
    Tsoupras AB, Fragopoulou E, Iatrou C et al (2011) In vitro protective effects of olive pomace polar lipids towards platelet activating factor metabolism in human renal cells. Curr Top Nutraceutical Res 9:105Google Scholar
  101. 101.
    Petsini F, Fragopoulou E, Antonopoulou S (2018) Fish consumption and cardiovascular disease related biomarkers: a review of clinical trials. Crit Rev Food Sci Nutr.
  102. 102.
    Din JN, Newby DE, Flapan AD (2004) Omega 3 fatty acids and cardiovascular disease – fishing for a natural treatment. BMJ 328:30–35CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Megson IL, Whitfield PD, Zabetakis I (2016) Lipids and cardiovascular disease: where does dietary intervention sit alongside statin therapy? Food Funct 7:2603–2614CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Rementzis J, Antonopoulou S, Argyropoulos D et al (1996) Biologically active lipids from S. scombrus. In: Nigam S., Kunkel G., Prescott S.M. (eds) Platelet-activating factor and related lipid mediators 2. Advances in Experimental Medicine and Biology 416, Springer, pp 65–72Google Scholar
  105. 105.
    Panayiotou A, Samartzis D, Nomikos T et al (2000) Lipid fractions with aggregatory and antiaggregatory activity toward platelets in fresh and fried cod (Gadus morhua): correlation with platelet-activating factor and atherogenesis. J Agric Food Chem 48:6372–6379CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Nasopoulou C, Nomikos T, Demopoulos C et al (2007) Comparison of antiatherogenic properties of lipids obtained from wild and cultured sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata). Food Chem 100:560–567CrossRefGoogle Scholar
  107. 107.
    Nasopoulou C, Stamatakis G, Demopoulos CA et al (2011) Effects of olive pomace and olive pomace oil on growth performance, fatty acid composition and cardio protective properties of gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Food Chem 129:1108–1113CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Nasopoulou C, Psani E, Sioriki E et al (2013) Evaluation of sensory and in vitro cardio protective properties of sardine (Sardina pilchardus): the effect of grilling and brining. Food Nutr Sci 4:940Google Scholar
  109. 109.
    Sioriki E, Nasopoulou C, Demopoulos CA et al (2015) Comparison of sensory and cardioprotective properties of olive-pomace enriched and conventional gilthead sea bream (Sparus aurata): the effect of grilling. J Aquat Food Prod Technol 24:782–795CrossRefGoogle Scholar
  110. 110.
    Nasopoulou C, Karantonis HC, Perrea DN et al (2010) In vivo anti-atherogenic properties of cultured gilthead sea bream (Sparus aurata) polar lipid extracts in hypercholesterolaemic rabbits. Food Chem 120:831–836CrossRefGoogle Scholar
  111. 111.
    Nasopoulou C, Karantonis HC, Andriotis M et al (2008) Antibacterial and anti-PAF activity of lipid extracts from sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata). Food Chem 111:433–438CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Morphis G, Kyriazopoulou A, Nasopoulou C et al (2016) Assessment of the in vitro antithrombotic properties of sardine (Sardina pilchardus) fillet lipids and cod liver oil. Fishes 1:1–15CrossRefGoogle Scholar
  113. 113.
    Tsoupras A, Lordan R, Demuru M et al (2018) Structural elucidation of Irish organic farmed salmon (Salmo salar) polar lipids with antithrombotic properties. Mar Drugs 16, 176Google Scholar
  114. 114.
    Lordan R, Tsoupras A, Mitra B et al (2018) Dairy fats and cardiovascular disease: do we really need to be concerned? Foods 7:29CrossRefPubMedCentralGoogle Scholar
  115. 115.
    Lecomte M, Bourlieu C, Michalski M-C (2017) Nutritional properties of milk lipids: specific function of the milk fat globule. In: Collier RJ, Preedy VR (eds) Dairy in human health and disease across the lifespan. Academic, Cambridge, MA, pp 435–452CrossRefGoogle Scholar
  116. 116.
    Le TT, Phan TTQ, Camp JV et al (2015) Milk and dairy polar lipids: occurrence, purification, nutritional and technological properties. In: Ahmad MU, Xu X (eds) Polar lipids: biology, chemistry, and technology. AOCS Press, Urbana, pp 91–143CrossRefGoogle Scholar
  117. 117.
    Dewettinck K, Rombaut R, Thienpont N et al (2008) Nutritional and technological aspects of milk fat globule membrane material. Int Dairy J 18:436–457CrossRefGoogle Scholar
  118. 118.
    Rombaut R, Dewettinck K (2006) Properties, analysis and purification of milk polar lipids. Int Dairy J 16:1362–1373CrossRefGoogle Scholar
  119. 119.
    Lopez C (2011) Milk fat globules enveloped by their biological membrane: unique colloidal assemblies with a specific composition and structure. Curr Opin Colloid Interface Sci 16:391–404CrossRefGoogle Scholar
  120. 120.
    Lopez C, Briard-Bion V, Ménard O (2014) Polar lipids, sphingomyelin and long-chain unsaturated fatty acids from the milk fat globule membrane are increased in milks produced by cows fed fresh pasture based diet during spring. Food Res Int 58:59–68CrossRefGoogle Scholar
  121. 121.
    Rodríguez-Alcalá LM, Fontecha J (2010) Major lipid classes separation of buttermilk, and cows, goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction. J Chromatogr A 1217:3063–3066CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Contarini G, Povolo M (2013) Phospholipids in milk fat: composition, biological and technological significance, and analytical strategies. Int J Mol Sci 14:2808CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Tsorotioti SE, Nasopoulou C, Detopoulou M et al (2014) In vitro anti-atherogenic properties of traditional Greek cheese lipid fractions. Dairy Sci Technol 94:269–281CrossRefGoogle Scholar
  124. 124.
    Poutzalis S, Anastasiadou A, Nasopoulou C et al (2016) Evaluation of the in vitro anti-atherogenic activities of goat milk and goat dairy products. Dairy Sci Technol 96:317–327CrossRefGoogle Scholar
  125. 125.
    Megalemou K, Sioriki E, Lordan R et al (2017) Evaluation of sensory and in vitro anti-thrombotic properties of traditional Greek yogurts derived from different types of milk. Heliyon 3:Article e00227CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Antonopoulou S, Semidalas CE, Koussissis S et al (1996) Platelet-activating factor (PAF) antagonists in foods: a study of lipids with PAF or anti-PAF-like activity in cow’s milk and yogurt. J Agric Food Chem 44:3047–3051CrossRefGoogle Scholar
  127. 127.
    Lordan R, Zabetakis I (2017) Ovine and caprine lipids promoting cardiovascular health in milk and its derivatives. Adv Dairy Res 5:176CrossRefGoogle Scholar
  128. 128.
    Karantonis HC, Antonopoulou S, Perrea DN et al (2006) In vivo antiatherogenic properties of olive oil and its constituent lipid classes in hyperlipidemic rabbits. Nutr Metab Cardiovasc Dis 16:174–185CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Xanthopoulou MN, Kalathara K, Melachroinou S et al (2017) Wine consumption reduced postprandial platelet sensitivity against platelet activating factor in healthy men. Eur J Nutr 56(4):1485.
  130. 130.
    Küllenberg D, Taylor LA, Schneider M et al (2012) Health effects of dietary phospholipids. Lipids Health Dis 11:1CrossRefGoogle Scholar
  131. 131.
    Cohn J, Kamili A, Wat E et al (2010) Dietary phospholipids and intestinal cholesterol absorption. Nutrients 2:116CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Weihrauch JL, Son Y-S (1983) Phospholipid content of foods. J Am Oil Chem Soc 60:1971–1978CrossRefGoogle Scholar
  133. 133.
    Zancada L, Pérez-Díez F, Sánchez-Juanes F et al (2013) Phospholipid classes and fatty acid composition of ewe’s and goat’s milk. Grasas Aceites 64:304–310CrossRefGoogle Scholar
  134. 134.
    Fragopoulou E, Choleva M, Antonopoulou S et al (2018) Wine and its metabolic effects. A comprehensive review of clinical trials. Metabolism 83:102CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Temple NJ (2016) What are the health implications of alcohol consumption? In: Wilson T, Temple NJ (eds) Beverage impacts on health and nutrition, 2nd edn. Springer International Publishing, Cham, pp 69–81CrossRefGoogle Scholar
  136. 136.
    Schwarzinger M, Thiébaut SP, Baillot S et al (2017) Alcohol use disorders and associated chronic disease – a national retrospective cohort study from France. BMC Public Health 18:43CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Arranz S, Chiva-Blanch G, Valderas-Martínez P et al (2012) Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 4:759CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    de Gaetano G, Costanzo S, Di Castelnuovo A et al (2016) Effects of moderate beer consumption on health and disease: a consensus document. Nutr Metab Cardiovasc Dis 26:443–467CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Rimm EB, Williams P, Fosher K et al (1999) Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ 319:1523–1528CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Fragopoulou E, Demopoulos CA, Antonopoulou S (2009) Lipid minor constituents in wines. A biochemical approach in the French paradox. Int J Wine Res 1:131–143Google Scholar
  141. 141.
    Soleas GJ, Diamandis EP, Goldberg DM (1997) Wine as a biological fluid: history, production, and role in disease prevention. J Clin Lab Anal 11:287–313CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Dell’Agli M, Buscialà A, Bosisio E (2004) Vascular effects of wine polyphenols. Cardiovasc Res 63:593–602CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Fragopoulou E, Antonopoulou S, Tsoupras A et al (2004) Antiatherogenic properties of red/white wine, musts, grape-skins, and yeast. In: 45th international conference on the bioscience of lipids. Elsevier, University of Ioannina, Greece, p 66Google Scholar
  144. 144.
    Fragopoulou E, Nomikos T, Tsantila N et al (2001) Biological activity of total lipids from red and white wine/must. J Agric Food Chem 49:5186–5193CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Fragopoulou E, Antonopoulou S, Demopoulos CA (2002) Biologically active lipids with antiatherogenic properties from white wine and must. J Agric Food Chem 50:2684–2694CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Fragopoulou E, Nomikos T, Antonopoulou S et al (2000) Separation of biologically active lipids from red wine. J Agric Food Chem 48:1234–1238CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Xanthopoulou MN, Asimakopoulos D, Antonopoulou S et al (2014) Effect of Robola and Cabernet Sauvignon extracts on platelet activating factor enzymes activity on U937 cells. Food Chem 165:50–59CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Renaud SC, Beswick AD, Fehily AM et al (1992) Alcohol and platelet aggregation: the Caerphilly Prospective Heart Disease Study. Am J Clin Nutr 55:1012–1017CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Argyrou C, Vlachogianni I, Stamatakis G et al (2017) Postprandial effects of wine consumption on Platelet Activating Factor metabolic enzymes. Prostaglandins Other Lipid Mediat 130:23CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Sikand G, Kris-Etherton P, Boulos NM (2015) Impact of functional foods on prevention of cardiovascular disease and diabetes. Curr Cardiol Rep 17:39CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Rozati M, Barnett J, Wu D et al (2015) Cardio-metabolic and immunological impacts of extra virgin olive oil consumption in overweight and obese older adults: a randomized controlled trial. Nutr Metab 12:28CrossRefGoogle Scholar
  153. 153.
    López-Miranda J, Pérez-Jiménez F, Ros E et al (2010) Olive oil and health: summary of the II international conference on olive oil and health consensus report. Nutr Metab Cardiovasc Dis 20:284–294CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Covas M-I, de la Torre R, Fitó M (2015) Virgin olive oil: a key food for cardiovascular risk protection. Br J Nutr 113:S19–S28CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Karantonis HC (2017) Antiatherogenic properties of olive oil glycolipids. In: Kiritsakis A, Shahidi F (eds) Olives and olive oil as functional foods. John Wiley & Sons Ltd, Chichester UKGoogle Scholar
  156. 156.
    Karantonis HC, Antonopoulou S, Demopoulos CA (2002) Antithrombotic lipid minor constituents from vegetable oils. Comparison between olive oils and others. J Agric Food Chem 50:1150–1160CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Tsantila N, Karantonis HC, Perrea DN et al (2007) Antithrombotic and antiatherosclerotic properties of olive oil and olive pomace polar extracts in rabbits. Mediat Inflamm 2007:36204CrossRefGoogle Scholar
  158. 158.
    Tsantila N, Karantonis HC, Perrea DN et al (2010) Atherosclerosis regression study in rabbits upon olive pomace polar lipid extract administration. Nutr Metab Cardiovasc Dis 20:740–747CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Karantonis HC, Tsantila N, Stamatakis G et al (2008) Bioactive polar lipids in olive oil, pomace and waste byproducts. J Food Biochem 32:443–459CrossRefGoogle Scholar
  160. 160.
    Nasopoulou C, Zabetakis I (2013) Agricultural and aquacultural potential of olive pomace a review. J Agric Sci 5:116Google Scholar
  161. 161.
    Masana L, Ros E, Sudano I et al (2017) Is there a role for lifestyle changes in cardiovascular prevention? What, when and how? Atheroscler Suppl 26:2–15CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Lim SS, Vos T, Flaxman AD et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2224–2260CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Ravera A, Carubelli V, Sciatti E et al (2016) Nutrition and cardiovascular disease: finding the perfect recipe for cardiovascular health. Nutrients 8:363CrossRefPubMedCentralGoogle Scholar
  164. 164.
    Anand SS, Hawkes C, de Souza RJ et al (2015) Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: a report from the workshop convened by the World Heart Federation. J Am Coll Cardiol 66:1590–1614CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Vogt TM, Appel LJ, Obarzanek EVA et al (1999) Dietary approaches to stop hypertension. J Acad Nutr Diet 99:S12–S18Google Scholar
  166. 166.
    Willett WC, Sacks F, Trichopoulou A et al (1995) Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 61:1402s–1406sCrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Trichopoulou A, Martínez-González MA, Tong TY et al (2014) Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med 12:112CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    World Cancer Research Fund, American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. American Institute for Cancer Research, Washington, DCGoogle Scholar
  169. 169.
    Davis C, Bryan J, Hodgson J et al (2015) Definition of the Mediterranean diet: a literature review. Nutrients 7:9139–9153CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Castro-Quezada I, Román-Viñas B, Serra-Majem L (2014) The Mediterranean diet and nutritional adequacy: a review. Nutrients 6:231CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Bach-Faig A, Berry EM, Lairon D et al (2011) Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr 14:2274–2284CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Bos MB, de Vries JHM, Feskens EJM et al (2010) Effect of a high monounsaturated fatty acids diet and a Mediterranean diet on serum lipids and insulin sensitivity in adults with mild abdominal obesity. Nutr Metab Cardiovasc Dis 20:591–598CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Serra-Majem L, Bes-Rastrollo M, Román-Viñas B et al (2009) Dietary patterns and nutritional adequacy in a Mediterranean country. Br J Nutr 101:S21–S28CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Rodríguez-Rejón AI, Castro-Quezada I, Ruano-Rodríguez C et al (2014) Effect of a Mediterranean diet intervention on dietary glycemic load and dietary glycemic index: the PREDIMED study. J Nutr Metab 2014:985373CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Estruch R, Martínez-González MA, Corella D et al (2009) Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J Epidemiol Community Health 63:582–588CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Estruch R, Martinez-Gonzalez MA, Corella D et al (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Turati F, Bravi F, Polesel J et al (2017) Adherence to the Mediterranean diet and nasopharyngeal cancer risk in Italy. Cancer Causes Control 28:89–95CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Giacosa A, Barale R, Bavaresco L et al (2013) Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur J Cancer Prev 22:90–95CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Rossi M, Turati F, Lagiou P et al (2013) Mediterranean diet and glycaemic load in relation to incidence of type 2 diabetes: results from the Greek cohort of the population-based European Prospective Investigation into Cancer and Nutrition (EPIC). Diabetologia 56:2405–2413CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Sofi F, Abbate R, Gensini GF et al (2010) Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr 92:1189–1196CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Sofi F, Macchi C, Abbate R et al (2013) Mediterranean diet and health. Biofactors 39:335–342CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Chrysohoou C, Panagiotakos DB, Pitsavos C et al (2004) Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: the Attica study. J Am Coll Cardiol 44:152–158CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Detopoulou P, Demopoulos C, Karantonis H et al (2015) Mediterranean diet and its protective mechanisms against cardiovascular disease: an insight into platelet activating factor (PAF) and diet interplay. Ann Nutr Disord Ther 2:1–10Google Scholar
  184. 184.
    Nasopoulou C, Gogaki V, Stamatakis G et al (2013) Evaluation of the in vitro anti-atherogenic properties of lipid fractions of olive pomace, olive pomace enriched fish feed and gilthead sea bream (Sparus aurata) fed with olive pomace enriched fish feed. Mar Drugs 11:3676CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Nasopoulou C, Gogaki V, Panagopoulou E et al (2013) Hen egg yolk lipid fractions with antiatherogenic properties. Anim Sci J 84:264–271CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Apitz-Castro R, Cabrera S, Cruz MR et al (1983) Effects of garlic extract and of three pure components isolated from it on human platelet aggregation, arachidonate metabolism, release reaction and platelet ultrastructure. Thromb Res 32:155–169CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Violi F, Pratico D, Ghiselli A et al (1990) Inhibition of cyclooxygenase-independent platelet aggregation by low vitamin E concentration. Atherosclerosis 82:247–252CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Kakishita E, Suehiro A, Oura Y et al (1990) Inhibitory effect of vitamin E (alpha-tocopherol) on spontaneous platelet aggregation in whole blood. Thromb Res 60:489–499CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Capasso R, Pinto L, Vuotto ML et al (2000) Preventive effect of eugenol on PAF and ethanol-induced gastric mucosal damage. Fitoterapia 71:S131–S137CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Park EJ, Suh M, Thomson B et al (2005) Dietary ganglioside decreases cholesterol content, caveolin expression and inflammatory mediators in rat intestinal microdomains. Glycobiology 15:935–942CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Rizzo M, Otvos J, Nikolic D et al (2014) Subfractions and subpopulations of HDL: an update. Curr Med Chem 21:2881–2891CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Marathe GK, Pandit C, Lakshmikanth CL et al (2014) To hydrolyze or not to hydrolyze: the dilemma of platelet-activating factor acetylhydrolase. J Lipid Res 55:1847–1854CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Poutzalis S, Lordan R, Nasopoulou C et al. (2018) Phospholipids of goat and sheep origin: Structural and functional studies. Small Ruminant Research 167:39–47CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ronan Lordan
    • 1
  • Constantina Nasopoulou
    • 2
  • Alexandros Tsoupras
    • 1
  • Ioannis Zabetakis
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of LimerickLimerickIreland
  2. 2.Department of Food Science and Nutrition, School of the EnvironmentUniversity of the AegeanMyrinaGreece

Personalised recommendations