Wine Polyphenols and Health

  • Giovanna GiovinazzoEmail author
  • Maria A. Carluccio
  • Francesco Grieco
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


The various polyphenol families present in wine are important for a number of technological properties of wine such as clarity, hue, and palatal taste. Dietary polyphenols are associated with a wide range of health benefits, protecting against chronic diseases and promoting healthy aging. However, basic and clinical science is showing that the reality is much more complex than this and that several issues, notably daily intake, bioavailability, or in vivo antioxidant activity, are yet to be resolved. The concentration of phenolic compounds in wine is determined by viticulture and vinification practices, peculiar of different countries. Interesting are the effects of different yeast strains on the final concentration of polyphenols in red wine. We here summarize the recent findings concerning the effects of specific classes of polyphenol (soluble acids, flavonols, and stilbenes) on human health and propose future directions for research to increase the amount of these healthy compounds in wine.


Wine Soluble acids Flavonols Stilbenes Yeast Health 



This research was partially supported by the Apulia Region in the framework of the Projects NEWINE (Bando “Ricerca e sperimentazione in Agricoltura”; Project code PRS_042), SOLBIOGRAPE (Bando “Ricerca e sperimentazione in Agricoltura”; Project code PRS_053), and DOMINA APULIAE (POR Puglia FESR – FSE 2014-2020-Azione 1.6. – InnoNetwork; Project code AGBGUK2).


  1. 1.
    Yung JY, Saliba AJ, Prenzler PD (2010) Should red wine be considered a functional food? Compr Rev Food Sci Food Saf 9:530–551CrossRefGoogle Scholar
  2. 2.
    Goldberg DM, Tsang E, Karumanchiri A, Diamandis EP, Soleas G, Ng E (1996) Method to assay the concentrations of phenolic constituents of biological interest in wines. Anal Chem 68:1688–1694PubMedCrossRefGoogle Scholar
  3. 3.
    Giovinazzo G, Grieco F (2015) Functional properties of grape and wine polyphenols. Plant Foods Hum Nutr 70:454–462PubMedCrossRefGoogle Scholar
  4. 4.
    Chong MF, Macdonald R, Lovegrove JA (2010) Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr 104(S3):S28–S39PubMedCrossRefGoogle Scholar
  5. 5.
    Jandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the vitaceae, biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741CrossRefGoogle Scholar
  6. 6.
    Pinasseau L, Vallverdú-Queralt A, Verbaere A, Roques M, Meudec E, Le Cunff L, Péros J-P, Ageorges A, Sommerer N, Boulet J-C, Terrier N, Cheynier V (2017) Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front Plant Sci 8:1826PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Paixao N, Pereira V, Marques JC, Camara JS (2008) Quantification of polyphenols with potential antioxidant properties in wines using reverse phase HPLC. J Sep Sci 31:2189–2198PubMedCrossRefGoogle Scholar
  8. 8.
    Soleas GJ, Diamandis EP, Goldberg DM (2001) The world of resveratrol. In: American Institute for Cancer Research (eds) Nutrition and Cancer Prevention. Advances in Experimental Medicine and Biology, vol 492. Springer, Boston, MA, pp 159–182CrossRefGoogle Scholar
  9. 9.
    Arnous A, Makris DP, Kefalas P (2001) Effect of principal polyphenolic components in relation to antioxidant characteristics of aged red wines. J Agric Food Chem 49:5736–5742PubMedCrossRefGoogle Scholar
  10. 10.
    Mattivi F, Zulian C, Nicolini G, Valenti L (2002) Wine, biodiversity, technology, and antioxidants. Ann N Y Acad Sci 957:37–56PubMedCrossRefGoogle Scholar
  11. 11.
    Saucier C, Little D, Glories Y (1997) First evidence of acetaldehyde-flavanol condensation products in red wine. Am J Enol Vitic 48:370–373Google Scholar
  12. 12.
    Sánchez-Iglesias M, González-Sanjosé ML, Pérez-Magariño S, Ortega-Heras M, González-Huerta C (2009) Effect of micro-oxygenation and wood type on the phenolic composition and colour of an aged red wine. J Agric Food Chem 57:11498–11509PubMedCrossRefGoogle Scholar
  13. 13.
    Berta Baca-Bocanegra J, Nogales-Bueno J, Hernández-Hierro M, Heredia FJ (2018) Evaluation of extractable polyphenols released to wine from cooperage byproduct by near infrared hyperspectral imaging. Food Chem 20:206–212CrossRefGoogle Scholar
  14. 14.
    Spranger MI, Climaco MC, Sun BS, Eiriz N, Fortunato C, Nunes A, Leandro MC, Avelar ML, Belchior AP (2004) Differentiation of red winemaking technologies by phenolic and volatile composition. Anal Chim Acta 513:151–161CrossRefGoogle Scholar
  15. 15.
    Restuccia D, Sicari V, Pellicanò TM, Spizzirri UG, Loizzo MR (2017) The impact of cultivar on polyphenol and biogenic amine profiles in Calabrian red grapes during winemaking. Food Res Int 102:303–312PubMedCrossRefGoogle Scholar
  16. 16.
    Cabrita MJ, Torres M, Palma V, Alves E, Patão R, Costa Feritas AM (2008) Impact of malolactic fermentation on low molecular weight phenolic compounds. Talanta 74:1281–1286PubMedCrossRefGoogle Scholar
  17. 17.
    Gil-Muñoz R, Gómez-Plaza E, Martínez A, López-Roca JM (1999) Evolution of phenolic compounds during wine fermentation and post-fermentation: influence of grape temperature. J Food Compos Anal 12:259–272CrossRefGoogle Scholar
  18. 18.
    Teixeira J, Gaspar A, Garrido EM, Garrido J, Borges F (2013) Hydroxycinnamic acid antioxidants: an electrochemical overview. Bio Med Res Int 2013:Article ID 251754. 11 pagesGoogle Scholar
  19. 19.
    Sul D, Kim HS, Lee D, Joo SS, Hwang KW, Park SY (2009) Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci 84:257–262PubMedCrossRefGoogle Scholar
  20. 20.
    Vauzour D, Houseman EJ, George TW, Corona G, Garnotel R, Jackson KG, Sellier C, Gillery P, Kennedy OB, Lovegrove JA, Spencer JP (2010) Moderate champagne consumption promotes an acute improvement in acute endothelial-independent vascular function in healthy human volunteers. Br J Nutr 103:1168–1178PubMedGoogle Scholar
  21. 21.
    Jung EH, Ran Kim S, Hwang IK, Youl HT (2007) Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agric Food Chem 55:9800–9804PubMedCrossRefGoogle Scholar
  22. 22.
    Vina J, Gomez-Cabrera MC, Borras C (2007) Fostering antioxidant defences, up-regulation of antioxidant genes or antioxidant supplementation. Br J Nutr 98:S36–S40PubMedCrossRefGoogle Scholar
  23. 23.
    Mink PJ, Scrafford CG, Barraj LM (2007) Flavonoid intake and cardiovascular disease mortality, a prospective study in post-menopausal women. Am J Clin Nutr 85:895–909PubMedCrossRefGoogle Scholar
  24. 24.
    Seeram NP, Adams LS, Hardy ML, Heber D (2004) Total cranberry extract versus its phytochemical constituents, anti-proliferative and synergistic effects against human tumour cell lines. J Agric Food Chem 52:2512–2517PubMedCrossRefGoogle Scholar
  25. 25.
    Soobratte MA, Bahorun T, Aruoma OI (2006) Chemopreventive actions of polyphenolic compounds in cancer. Biofactors 27:19–35CrossRefGoogle Scholar
  26. 26.
    Fink BN, Steck SE, Wolff MS, Britton JA, Kabat GC, Schroeder JC, Teitelbaum SL, Neugut AI, Gammon MD (2007) Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol 165:514–523PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu L, Zhang Y, Lu J (2012) Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int J Mol Sci 13:3492–3510PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dvorakova M, Landa P (2017) Anti-inflammatory activity of natural stilbenoids: a review. Pharm Res 124:126–145CrossRefGoogle Scholar
  29. 29.
    Piotrowska H, Kucinska M, Murias M (2012) Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 750:60–82PubMedCrossRefGoogle Scholar
  30. 30.
    Neves AR, Lúcio M, Lima JLC, Reis S (2012) Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics drug-delivery, and membrane interactions. Curr Med Chem 19:1663–1681PubMedCrossRefGoogle Scholar
  31. 31.
    Poulose SM, Thangthaeng N, Miller MG, Shukitt-Hale B (2015) Effects of pterostilbene and resveratrol on brain and behaviour. Neurochem Int 89:227–233PubMedCrossRefGoogle Scholar
  32. 32.
    Rivière C, Pawlus AD, Mérillon JM (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29:1317–1333PubMedCrossRefGoogle Scholar
  33. 33.
    Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506PubMedCrossRefGoogle Scholar
  34. 34.
    Zamora-Ros R, Andres-Lacueva C, Lamuela-Raventos RM, Berenguer T, Jakszyn P, Martinez C, Sanchez M, Navarro C, Chirlaque M, Tormo M-J, Quiros J, Amiano P, Dorronsoro M, Larranaga N, Barricarte A, Ardanaz E, Gonzalez C (2008) Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a Spanish population, European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Br J Nutr 100:188–196PubMedCrossRefGoogle Scholar
  35. 35.
    Gerard E, Mullin MD (2011) Red wine, grapes, and better health-resveratrol. Nutr Clin Pract 26:722–723CrossRefGoogle Scholar
  36. 36.
    D’Introno A, Paradiso A, Scoditti E, D’Amico L, De Paolis A, Carluccio MA, Nicoletti I, DeGara L, Santino A, Giovinazzo G (2009) Anti-oxidant and anti-inflammatory properties of tomato fruit synthesising different amount of stilbenes. Plant Biotechnol J 7:422–429PubMedCrossRefGoogle Scholar
  37. 37.
    Frei B (2004) Efficacy of dietary antioxidants to prevent oxidative damage and inhibit chronic disease. J Nutr 134:3196–3198CrossRefGoogle Scholar
  38. 38.
    Kundu JK, Surth YJ (2008) Cancer chemopreventive and therapeutic potential of resveratrol, mechanistic perspectives. Cancer Lett 269:243–261PubMedCrossRefGoogle Scholar
  39. 39.
    Nguyen A, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C, Holcombe RF (2009) Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res 1:25–37PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fonar Y, Frank D (2011) FAK and WNT signaling: the meeting of two pathways in cancer and development. Anti Cancer Agents Med Chem 11:600–606CrossRefGoogle Scholar
  41. 41.
    Kaminski BM, Steinhilber D, Stein JM, Ulrich S (2011) Phytochemicals resveratrol and sulforaphane as potential agents for enhancing the anti-tumor activities of conventional cancer therapies. Curr Pharm Biotechnol 67:1167–1178Google Scholar
  42. 42.
    Vergara D, Simeone P, Toraldo D, Del Boccio P, Vergaro V, Leporatti S, Pieragostino D, Tinelli A, De Domenico S, Alberti S, Urbani A, Salzet M, Santino A, Maffia M (2012) Resveratrol down regulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Mol Biosyst 8:1078–1087PubMedCrossRefGoogle Scholar
  43. 43.
    Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ (2008) Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr Rev 66:445–454PubMedCrossRefGoogle Scholar
  44. 44.
    Bruno R, Ghisolfi L, Priulla M, Nicolin A, Bertelli A (2003) Wine and tumours: study of resveratrol. Drugs Exp Clin Res 29:257–261PubMedGoogle Scholar
  45. 45.
    Jazirehi AR, Bonavida B (2004) Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin’s lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis. Mol Cancer Ther 3:71–84PubMedCrossRefGoogle Scholar
  46. 46.
    Dulak J (2005) Nutraceuticals as anti-angiogenic agents: hopes and reality. J Physiol Pharmacol 56:51–67PubMedGoogle Scholar
  47. 47.
    Jones SB, DePrimo SE, Whitfield ML, Brooks JD (2005) Resveratrol induced gene expression profiles in human prostate cancer cells. Cancer Epidemiol Biomark Prev 14:596–604CrossRefGoogle Scholar
  48. 48.
    Sharma S, Chopra K, Kulkarni SK (2007) Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain, participation of nitric oxide F TNF-alpha. Phytother Res 21:278–283PubMedCrossRefGoogle Scholar
  49. 49.
    Anekonda TS (2006) Resveratrol a boon for treating Alzheimer’s disease? Brain Res Rev 52:316–326PubMedCrossRefGoogle Scholar
  50. 50.
    Wodd JG, Rogina B, Lavu S, Howitz K, Hefland SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689CrossRefGoogle Scholar
  51. 51.
    Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 14:421–433CrossRefGoogle Scholar
  52. 52.
    Pearson KJ1, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Carluccio MA, Ancora MA, Massaro M, Carluccio M, Scoditti E, Distante A, Storelli C, De Caterina R (2007) Homocysteine induces VCAM-1 gene expression through NF-kappa B and NAD(P)H oxidase activation, protective role of Mediterranean diet polyphenolic antioxidants. Am J Physiol Heart Circ Physiol 293:2344–2354CrossRefGoogle Scholar
  54. 54.
    Csiszar A, Smith K, Labinskyy N, Orosz Z, Rivera A, Ungvari Z (2006) Resveratrol attenuates TNF-α-induced activation of coronary arterial endothelial cells: role of NF-κB inhibition. Am J Physiol-Heart Circ Physiol 291:H1694–H1699PubMedCrossRefGoogle Scholar
  55. 55.
    Pietrocola F, Mariño G, Lissa D, Vacchell IE, Malik SA, Niso-Santano M, Zamzami N, Galluzzi L, Maiuri MC, Kroemer G (2012) Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins. Cell Cycle 11:3851–3860PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Amri A, Chaumeil JC, Sfar S, Charrueau C (2012) Administration of resveratrol, what formulation solutions to bioavailability limitations ? J Control Rel 158:182–193CrossRefGoogle Scholar
  57. 57.
    González-Neves G, Gil G, Favre G, Baldi C, Hernández N, Traverso S (2013) Influence of winemaking procedure and grape variety on the color and composition of young red wines. S Afr J Enol Vitic 34:138–146Google Scholar
  58. 58.
    Gambacorta G, Antonacci D, Pati S, la Gatta M, Faccia M, Coletta A, La Notte E (2011) Influence of winemaking technologies on phenolic composition of Italian red wines. Eur Food Res Technol 233:1057–1066CrossRefGoogle Scholar
  59. 59.
    El Darra N, Turk MF, Ducasse MA, Grimi N, Maroun RG, Louka N, Vorobiev E (2016) Changes in polyphenol profiles and color composition of freshly fermented model wine due to pulsed electric field, enzymes and thermos vinification pretreatments. Food Chem 194:944–950PubMedCrossRefGoogle Scholar
  60. 60.
    Atanacković M, Petrović A, Jović S, Gojković-Bukarica L, Bursać M, Cvejić J (2012) Influence of winemaking techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines. Food Chem 131:513–518CrossRefGoogle Scholar
  61. 61.
    Gambuti A, Strollo D, Erbaggio A, Lecce L, Moio L (2007) Effect of winemaking practices on color indexes and selected bioactive phenolics of Aglianico wine. J Food Sci 72:S623–S628PubMedCrossRefGoogle Scholar
  62. 62.
    Kostadinović S, Wilkens A, Stefova M, Ivanova V, Vojnoski B, Mirhosseini H, Winterhalter P (2012) Stilbene levels and antioxidant activity of Vranec and Merlot wines from Macedonia: effect of variety and enological practices. Food Chem 135:3003–3009PubMedCrossRefGoogle Scholar
  63. 63.
    Ivanova V, Vojnoski B, Stefova M (2012) Effect of winemaking treatment and wine aging on phenolic content in Vranec wines. J Food Sci Technol 492:161–172CrossRefGoogle Scholar
  64. 64.
    Coletta A, Trani A, Faccia M, Punzi R, Dipalmo T, Crupi P, Antonacci D, Gambacorta G (2013) Influence of viticultural practices and winemaking technologies on phenolic composition and sensory characteristics of Negroamaro red wines. Int J Food Sci Technol 4811: 2215–2227Google Scholar
  65. 65.
    Ferraretto P, Celotti E (2016) Preliminary study of the effects of ultrasound on red wine polyphenols. CyTA-J Food 14:529–535Google Scholar
  66. 66.
    Baiano A, Terracone C, Gambacorta G, La Notte E (2009) Phenolic content and antioxidant activity of Primitivo wine: comparison among winemaking technologies. J Food Sci 74: 258–267CrossRefGoogle Scholar
  67. 67.
    Francesca N, Romano R, Sannino C, Le Grottaglie L, Settanni L, Moschetti G (2014) Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration. Int J Food Microbiol 17:84–93CrossRefGoogle Scholar
  68. 68.
    Mulero J, Zafrilla P, Cayuela JM, Martínez-Cachá A, Pardo F (2011) Antioxidant activity and phenolic compounds in organic red wine using different winemaking techniques. J Food Sci 76:C436–C440PubMedCrossRefGoogle Scholar
  69. 69.
    Cholet CL, Delsart C, Petrel M, Gontier E, Grimi N, L’Hyvernay A, Ghidossi R, Vorobiev E, Mietton-Peuchot M, Geny L (2014) Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides. J Agric Food Chem 62:2925–2934PubMedCrossRefGoogle Scholar
  70. 70.
    Delsart C, Ghidossi R, Poupot C, Cholet C, Grimi N, Vorobiev E, Milisic V, Peuchot MM (2012) Enhanced extraction of phenolic compounds from merlot grapes by pulsed electric field treatment. Am J Enol Vitic 63:205–211CrossRefGoogle Scholar
  71. 71.
    Puértolas E, Saldaña G, Alvarez I, Raso J (2010) Effect of pulsed electric field processing of red grapes on wine chromatic and phenolic characteristics during aging in oak barrels. J Agric Food Chem 58:2351–2357PubMedCrossRefGoogle Scholar
  72. 72.
    Luengo E, Alvarez I, Raso J (2015) Phenolic extraction: pulsed electric fields: a technology for improving phenolic extraction in red wines. Wine Vitic J 301:17–21Google Scholar
  73. 73.
    Bai B, He F, Yang L, Chen F, Reeves MJ, Li J (2013) Comparative study of phenolic compounds in Cabernet Sauvignon wines made in traditional and Ganimede fermenters. Food Chem 1414:3984–3992CrossRefGoogle Scholar
  74. 74.
    Morata A, Gomez-Cordoves C, Subervolia J, Bartolome B, Colomo B, Suarez JA (2003) Adsorption of anthocyanins by yeast cell walls during fermentation of red wines. J Agric Food Chem 51:4084–4088PubMedCrossRefGoogle Scholar
  75. 75.
    Rodriguez-Nogales JM, Fernández-Fernández E, Gómez M, Vila-Crespo J (2012) Antioxidant properties of sparkling wines produced with β-glucanases and commercial yeast preparations. J Food Sci 77:1005–1010CrossRefGoogle Scholar
  76. 76.
    Mazauric JP, Salmon JM (2005) Interactions between yeast lees and wine polyphenols during simulation of wine aging: I analysis of remnant polyphenolic compounds in the resulting wines. J Agric Food Chem 53:5647–5653PubMedCrossRefGoogle Scholar
  77. 77.
    Girard B, Yuksel D, Cliff MA, Delaquis P, Reynolds AG (2001) Vinification effects on the sensory, colour, and GC profiles of Pinot noir wines from British Colombia. Food Res Int 34:483–499CrossRefGoogle Scholar
  78. 78.
    Mazza G, Fukumoto L, Delaquis P, Girard B, Ewert B (1999) Anthocyanins, phenolics, and color of Cabernet franc, Merlot, and Pinot noir wines from British Colombia. J Agric Food Chem 47:4009–4017PubMedCrossRefGoogle Scholar
  79. 79.
    Brandolini V, Fiore C, Maietti A, Tedeschi P, Romano P (2007) Influence of Saccharomyces cerevisiae strains on wine total antioxidant capacity evaluated by photo-chemiluminescence. World J Microbiol Biotechnol 23:581–586CrossRefGoogle Scholar
  80. 80.
    Carew AL, Smith P, Close DC, Curtin C, Dambergs RG (2013) Yeast effects on Pinot noir wine phenolics, color, and tannin composition. J Agric Food Chem 6141:9892–9898CrossRefGoogle Scholar
  81. 81.
    Carrascosa AV, Bartolome B, Robredo S, Leon A, Cebollero E, Juega M, Nunez YP, Martinez MC, Martinez-Rodriguez AJ (2012) Influence of locally-selected yeast on the chemical and sensorial properties of Albariño white wines. LWT-Food Sci Technol 46: 319–325CrossRefGoogle Scholar
  82. 82.
    Tufariello M, Chiriatti MA, Grieco F, Perrotta C, Capone S, Rampino P, Tristezza M, Mita G, Grieco F (2014) Influence of autochthonous Saccharomyces cerevisiae strains on volatile profile of Negroamaro wines. LWT Food Sci Technol 58:35–48CrossRefGoogle Scholar
  83. 83.
    Caridi A, De Bruno A, De Salvo E, Piscopo A, Poiana M, Sidari R (2017) Selected yeasts to enhance phenolic content and quality in red wine from low-pigmented grapes. Eur Food Res Technol 2433:367–378CrossRefGoogle Scholar
  84. 84.
    Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526PubMedCrossRefGoogle Scholar
  85. 85.
    Calabriso N, Scoditti E, Massaro M, Pellegrino M, Storelli C, Ingrosso I, Giovinazzo G, Carluccio MA (2016) Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression. Eur J Nutr 55:477–489PubMedCrossRefGoogle Scholar
  86. 86.
    Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecule: NF-kB and cytokine-inducible enhancer. FASEB J 9:899–909PubMedCrossRefGoogle Scholar
  87. 87.
    Scoditti E, Calabriso N, Massaro M, Pellegrino M, Storelli C, Martines G, De Caterina R, Carluccio MA (2012) Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys 527:81–89PubMedCrossRefGoogle Scholar
  88. 88.
    Tribolo S, Lodi F, Connor C, Suri S, Wilson VG, Taylor MA, Needs PW, Kroon PA, Hughes DA (2008) Comparative effects of quercetin and its predominant human metabolites on adhesion molecule expression in activated human vascular endothelial cells. Atherosclerosis 197:50–56PubMedCrossRefGoogle Scholar
  89. 89.
    Shimoi K, Saka N, Nozawa R, Sato M, Amano I, Nakayama T, Kinae N (2001) Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metab Dispos 29:1521–1524PubMedGoogle Scholar
  90. 90.
    Lodi F, Winterbone MS, Tribolo S, Needs PW, Hughes DA, Kroon PA (2012) Human quercetin conjugated metabolites attenuate TNF-alpha-induced changes in Vasomodulatory molecules in a HUASMCs/HUVECs co-culture model. Planta Med 78:1571–1573PubMedCrossRefGoogle Scholar
  91. 91.
    Boomgaarden I, Egert S, Rimbach G, Wolffram S, Muller MJ, Doring F (2010) Quercetin supplementation and its effect on human monocyte gene expression profiles in vivo. Br J Nutr 104:336–345PubMedCrossRefGoogle Scholar
  92. 92.
    Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–6093PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R (2003) Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 23:622–629PubMedCrossRefGoogle Scholar
  94. 94.
    Lee B, Moon SK (2005) Resveratrol inhibits TNF-alpha-induced proliferation and matrix metalloproteinase expression in human vascular smooth muscle cells. J Nutr 135:2767–2773PubMedCrossRefGoogle Scholar
  95. 95.
    Calabriso N, Massaro M, Scoditti E, Pellegrino M, Ingrosso I, Giovinazzo G, Carluccio MA (2016) Red grape skin polyphenols blunt matrix metalloproteinase-2 and-9 activity and expression in cell models of vascular inflammation: protective role in degenerative and inflammatory diseases. Molecules 21(9):1147CrossRefGoogle Scholar
  96. 96.
    Pendurthi UR, Williams JT, Rao LVM (1999) Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells – a possible mechanism for the cardiovascular benefits associated with moderate consumption of wine. Arterioscler Thromb Vasc Biol 19:419–426PubMedCrossRefGoogle Scholar
  97. 97.
    Takizawa Y, Kosuge Y, Awaji H, Tamura E, Takai A, Yanai T, Yamamoto R, Kokame K, Miyata T, Nakata R, Inoue H (2013) Up-regulation of endothelial nitric oxide synthase (eNOS), silent mating type information regulation 2 homologue 1 (SIRT1) and autophagy-related genes by repeated treatments with resveratrol in human umbilical vein endothelial cells. Br J Nutr 110:2150–2155PubMedCrossRefGoogle Scholar
  98. 98.
    Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, Csiszar A (2010) Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Phys Heart Circ Phys 299:H18–H24Google Scholar
  99. 99.
    Bresciani L, Calani L, Bocchi L, Delucchi F, Savi M, Ray S, Brighenti F, Stilli D, Del Rio D (2014) Bioaccumulation of resveratrol metabolites in myocardial tissue is dose-time dependent and related to cardiac hemodynamics in diabetic rats. Nutr Metab Cardiovasc Dis 24:408–415PubMedCrossRefGoogle Scholar
  100. 100.
    Agarwal B, Campen MJ, Channell MM, Wherry SJ, Varamini B, Davis JG, Baur JA, Smoliga JM (2013) Resveratrol for primary prevention of atherosclerosis: clinical trial evidence for improved gene expression in vascular endothelium. Int J Cardiol 166:246–248PubMedCrossRefGoogle Scholar
  101. 101.
    Tome-Carneiro J, Gonzálvez M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, Tomás-Barberán FA, García-Conesa MT, Espín JC et al (2013) Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drug Ther 27:37–48CrossRefGoogle Scholar
  102. 102.
    Tome-Carneiro J, Larrosa M, Yáñez-Gascón MJ, Dávalos A, Gil-Zamorano J, Gonzálvez M, García-Almagro FJ, Ruiz Ros JA, Tomás-Barberán FA, Espín JC, García-Conesa MT (2013) One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 72:69–82PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giovanna Giovinazzo
    • 1
    Email author
  • Maria A. Carluccio
    • 2
  • Francesco Grieco
    • 1
  1. 1.Institute of Sciences of Food Production (ISPA)National Research CouncilLecceItaly
  2. 2.Institute of Clinical Physiology (IFC)National Research CouncilLecceItaly

Personalised recommendations