Advertisement

Anthocyanins: Nutrition and Health

  • Iva Fernandes
  • Cláudia Marques
  • Ana Évora
  • Ana Faria
  • Conceição Calhau
  • Nuno Mateus
  • Victor de FreitasEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

After consumption of anthocyanin-rich foods, there is a long journey before these bioactives may exert a health-promoting property. They must pass through the oral cavity, the gastrointestinal tract, undergo metabolism events, pass cellular barriers, and eventually trigger a biological event.

Hence, before looking at the health effects of anthocyanins, some topics related to their food bioaccessibility, interaction with biomolecules (proteins, biomembranes, and DNA), and bioavailability/metabolism will be described as possible interferers to their bioactive effects.

There are several reports on the health preventing properties of anthocyanins on several diseases like cardiovascular diseases, some types of cancers, diseases, diabetes, allergies and osteoporosis. In this chapter some of the less revisited ones giving emphasis to obesity/metabolic syndrome, microbiota modulation, neurodegenerative diseases and skin health will be reviewed.

Keywords

Anthocyanins Bioactives Disease Food 

References

  1. 1.
    Crozier A et al (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Natural Product ReportsGoogle Scholar
  2. 2.
    Charron CS et al (2009) Bioavailability of anthocyanins from purple carrot juice: effects of acylation and plant matrix. J Agric Food Chem 57:1226–1230PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Delgado-Vargas F et al (2000) Natural pigments: carotenoids, anthocyanins, and betalains – characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Oliveira J et al (2014) Previous and recent advances in pyranoanthocyanins equilibria in aqueous solution. Dyes Pigments 100:190–200CrossRefGoogle Scholar
  5. 5.
    Fernandes I et al (2015) Multiple-approach studies to assess anthocyanin bioavailability. Phytochem Rev 14:899–919CrossRefGoogle Scholar
  6. 6.
    Khanal RC et al (2010) Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins. Food Res Int 43:1464–1469CrossRefGoogle Scholar
  7. 7.
    Pina F et al (2015) Anthocyanins and derivatives are more than flavylium cations. Tetrahedron 71:3107–3114CrossRefGoogle Scholar
  8. 8.
    Patras A et al (2010) Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol 21:3–11CrossRefGoogle Scholar
  9. 9.
    Rodríguez R et al (2004) Mechanical properties of white and green asparagus: changes related to modifications of cell wall components. J Sci Food Agric 84:1478–1486CrossRefGoogle Scholar
  10. 10.
    Chanliaud E et al (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20:25–35PubMedCrossRefGoogle Scholar
  11. 11.
    Cheynier V (2005) Polyphenols in foods are more complex than often thought. Am J Clin Nutr 81:223s–229sPubMedCrossRefGoogle Scholar
  12. 12.
    Fernandes A et al (2013) Effect of cyclodextrins on the thermodynamic and kinetic properties of cyanidin-3-O-glucoside. Food Res Int 51:748–755CrossRefGoogle Scholar
  13. 13.
    Fernandes A et al (2014) Understanding the molecular mechanism of anthocyanin binding to pectin. Langmuir 30:8516–8527PubMedCrossRefGoogle Scholar
  14. 14.
    Marques C et al (2016) Pharmacokinetics of blackberry anthocyanins consumed with or without ethanol: a randomized and crossover trial. Mol Nutr Food Res 60:2319–2330PubMedCrossRefGoogle Scholar
  15. 15.
    Xiao D et al (2017) The effect of dietary factors on strawberry anthocyanins oral bioavailability. Food Funct 8:3970–3979PubMedCrossRefGoogle Scholar
  16. 16.
    Walton MC et al (2009) Viscous food matrix influences absorption and excretion but not metabolism of blackcurrant anthocyanins in rats. J Food Sci 74:H22–HH9PubMedCrossRefGoogle Scholar
  17. 17.
    Kamonpatana K et al (2014) Anthocyanin structure determines susceptibility to microbial degradation and bioavailability to the buccal mucosa. J Agric Food Chem 62:6903–6910PubMedCrossRefGoogle Scholar
  18. 18.
    Ferrer-Gallego R et al (2015) New anthocyanin–human salivary protein complexes. Langmuir 31:8392–8401PubMedCrossRefGoogle Scholar
  19. 19.
    Soares S et al (2013) Different phenolic compounds activate distinct human bitter taste receptors. J Agric Food Chem 61:1525–1533PubMedCrossRefGoogle Scholar
  20. 20.
    Podsedek A et al (2017) Inhibitory potential of red cabbage against digestive enzymes linked to obesity and type 2 diabetes. J Agric Food Chem 65:7192–7199PubMedCrossRefGoogle Scholar
  21. 21.
    McDougall GJ et al (2005) The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 23:189–195PubMedCrossRefGoogle Scholar
  22. 22.
    Williamson G (2013) Possible effects of dietary polyphenols on sugar absorption and digestion. Mol Nutr Food Res 57:48–57PubMedCrossRefGoogle Scholar
  23. 23.
    Jakobs S et al (2006) Natural flavonoids are potent inhibitors of glycogen phosphorylase. Mol Nutr Food Res 50:52–57PubMedCrossRefGoogle Scholar
  24. 24.
    Castro-Acosta ML et al (2016) Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects. Proc Nutr Soc 75:342–355PubMedCrossRefGoogle Scholar
  25. 25.
    Castro-Acosta ML et al (2016) Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J Nutr Biochem 38:154–161PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wiese S et al (2009) Protein interactions with cyanidin-3-glucoside and its influence on α-amylase activity. J Sci Food Agric 89:33–40CrossRefGoogle Scholar
  27. 27.
    Cahyana Y et al (2013) Interaction of anthocyanins with human serum albumin: influence of pH and chemical structure on binding. Food Chem 141:2278–2285PubMedCrossRefGoogle Scholar
  28. 28.
    Ossman T et al (2016) Interaction of wine anthocyanin derivatives with lipid bilayer membranes. Comput Theor Chem 1077:80–86CrossRefGoogle Scholar
  29. 29.
    Bonarska-Kujawa D et al (2012) Interaction of selected anthocyanins with erythrocytes and liposome membranes. Cell Mol Biol Lett 17:289–308PubMedCrossRefGoogle Scholar
  30. 30.
    Tsuchiya H (2011) Effects of red wine flavonoid components on biomembranes and cell proliferation. Int J Wine Res 3:9CrossRefGoogle Scholar
  31. 31.
    Sarma AD et al (1999) Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry 52:1313–1318CrossRefGoogle Scholar
  32. 32.
    Mas T et al (2000) DNA triplex stabilization property of natural anthocyanins. Phytochemistry 53:679–687PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Fernandes I et al (2014) Bioavailability of anthocyanins and derivatives. J Funct Foods 7:54–66CrossRefGoogle Scholar
  34. 34.
    Lila MA et al (2016) Unraveling anthocyanin bioavailability for human health. Annu Rev Food Sci Technol 7:375–393PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kamonpatana K et al (2012) Susceptibility of anthocyanins to ex vivo degradation in human saliva. Food Chem 135:738.  https://doi.org/10.1016/j.foodchem.2012.04.110CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mallery SR et al (2011) Effects of human oral mucosal tissue, saliva and oral microflora on intraoral metabolism and bioactivation of black raspberry anthocyanins. Cancer Prev Res (Phila) 4:1209–1221CrossRefGoogle Scholar
  37. 37.
    Talavera S et al (2003) Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J Nutr 133:4178–4182PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Fang J (2014) Bioavailability of anthocyanins. Drug Metab Rev 46:508–520PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Oliveira H et al (2015) Experimental and theoretical data on the mechanism by which red wine anthocyanins are transported through human MKN-28 gastric cell model. J Agric Food Chem 63:7685PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Atnip AA et al (2017) Time, concentration, and pH-dependent transport and uptake of anthocyanins in a human gastric epithelial (NCI-N87) cell line. Int J Mol Sci 18:446PubMedCentralCrossRefGoogle Scholar
  41. 41.
    Fernandes I et al (2012) A new approach on the gastric absorption of anthocyanins. Food Funct 3:508–516PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    He J et al (2010) Oxovitisins: a new class of neutral pyranone-anthocyanin derivatives in red wines. J Agric Food Chem 58:8814–8819PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Fernandes I et al (2012) On the bioavailability of flavanols and anthocyanins: Flavanol–anthocyanin dimers. Food Chem 135:812–818PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Faria A et al (2009) Bioavailability of anthocyanin-pyruvic acid adducts in rat. In: International Conference on Polyphenols and Health, Yorkshire, LeedsGoogle Scholar
  45. 45.
    Bub A et al (2001) Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur J Nutr 40:113–120PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Bitsch R et al (2004) Bioavailability and biokinetics of anthocyanins from red grape juice and red wine. J Biomed Biotechnol 2004:293–298PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Garcia-Alonso M et al (2009) Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem 20:521–529PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kuntz S et al (2015) Uptake and bioavailability of anthocyanins and phenolic acids from grape/blueberry juice and smoothie in vitro and in vivo. Br J Nutr 113:1044–1055PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Fernandes I et al (2017) Pharmacokinetics of table and port red wine anthocyanins: a crossover trial in healthy men. Food Funct 8:2030–2037PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Czank C et al (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr 97:995–1003PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Manach C et al (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242SPubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Alzaid F et al (2013) Regulation of glucose transporter expression in human intestinal Caco-2 cells following exposure to an anthocyanin-rich berry extract. PLoS One 8:e78932PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zou TB et al (2014) The role of sodium-dependent glucose transporter 1 and glucose transporter 2 in the absorption of cyanidin-3-o-beta-glucoside in Caco-2 cells. Nutrients 6:4165–4177PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hribar U et al (2014) The metabolism of anthocyanins. Curr Drug Metab 15:3–13PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Faria A et al (2009) Absorption of anthocyanins through intestinal epithelial cells – putative involvement of GLUT2. Mol Nutr Food Res 53:1430–1437PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Dreiseitel A et al (2009) Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1. Br J Pharmacol 158:1942–1950PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Williamson G et al (2010) Colonic metabolites of berry polyphenols: the missing link to biological activity? Br J Nutr 104:S48–S66PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mueller D et al (2017) Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries. Food Chem 231:275–286PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Azzini E et al (2017) Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxidative Med Cell Longev 2017:2740364Google Scholar
  60. 60.
    Lee YM et al (2017) Dietary anthocyanins against obesity and inflammation. Nutrients 9:1089PubMedCentralCrossRefGoogle Scholar
  61. 61.
    Li D et al (2017) Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr 57:1729–1741PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Guo H et al (2015) The update of anthocyanins on obesity and type 2 diabetes: experimental evidence and clinical perspectives. Rev Endocr Metab Disord 16:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Zhu Y et al (2011) Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem 57:1524–1533PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Li D et al (2015) Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J Nutr 145:742–748PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Yang L et al (2017) Role of purified anthocyanins in improving Cardiometabolic risk factors in Chinese men and women with prediabetes or early untreated diabetes-a randomized controlled trial. Nutrients 9:pii E1104PubMedCentralCrossRefGoogle Scholar
  66. 66.
    Overall J et al (2017) Metabolic effects of berries with structurally diverse anthocyanins. Int J Mol Sci 18:pii: E422Google Scholar
  67. 67.
    Kay CD et al (2017) Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence. Annu Rev Food Sci Technol 8:155–180PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ley RE et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Novotny JA et al (2017) The effect of obesity and repeated exposure on pharmacokinetic response to grape polyphenols in humans. Mol Nutr Food Res 61:1700043CrossRefGoogle Scholar
  70. 70.
    Grice EA et al (2011) The skin microbiome. Nat Rev Microbiol 9:244–253PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mark Welch JL et al (2016) Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A 113:E791–E800PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Man WH et al (2017) The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 15:259–270PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Sender R et al (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lynch SV et al (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Levy M et al (2017) Dysbiosis and the immune system. Nat Rev Immunol 17:219–232PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Petersen C et al (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16:1024–1033PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Gibson GR et al (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hill C et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Sanchez-Patan F et al (2012) In vitro fermentation of a red wine extract by human gut microbiota: changes in microbial groups and formation of phenolic metabolites. J Agric Food Chem 60:2136–2147PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Hidalgo M et al (2012) Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem 60:3882–3890PubMedCrossRefGoogle Scholar
  82. 82.
    Queipo-Ortuno MI et al (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 95:1323–1334PubMedCrossRefGoogle Scholar
  83. 83.
    Jakesevic M et al (2013) Effects of bilberry (Vaccinium myrtillus) in combination with lactic acid bacteria on intestinal oxidative stress induced by ischemia-reperfusion in mouse. J Agric Food Chem 61:3468–3478PubMedCrossRefGoogle Scholar
  84. 84.
    Almeida Morais C et al (2014) Jussara (Euterpe edulis Mart.) supplementation during pregnancy and lactation modulates the gene and protein expression of inflammation biomarkers induced by trans-fatty acids in the colon of offspring. Mediat Inflamm 2014:987927CrossRefGoogle Scholar
  85. 85.
    Podsedek A et al (2014) Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. Biomed Res Int 2014:365738CrossRefGoogle Scholar
  86. 86.
    Zhang X et al (2016) The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. J Agric Food Chem 64:2582–2590PubMedCrossRefGoogle Scholar
  87. 87.
    Fernandez-Navarro T et al (2016) Bioactive compounds from regular diet and faecal microbial metabolites. Eur J Nutr 57:487–497PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Nair AB et al (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Marques C (2018) Unraveling the effects of anthocyanins in metabolic health and disease: insights on bioavailability and gut microbiota modulation. University of Porto, PortoGoogle Scholar
  90. 90.
    Mayer EA et al (2015) Gut/brain axis and the microbiota. J Clin Invest 125:926–938PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Barrett E et al (2012) Gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Roshchina V (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In: Lyte M et al (eds) Microbial endocrinology – Interkingdom signaling in infectious disease and health. Springer New YorkCrossRefGoogle Scholar
  93. 93.
    O’Mahony SM et al (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48PubMedCrossRefGoogle Scholar
  94. 94.
    Lovelace MD et al (2017) Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 112:373–388PubMedCrossRefGoogle Scholar
  95. 95.
    Kennedy PJ et al (2017) Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112:399–412PubMedCrossRefGoogle Scholar
  96. 96.
    Meireles M et al (2015) The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet. J Nutr Biochem 26:1166–1173PubMedCrossRefGoogle Scholar
  97. 97.
    Carvalho FB et al (2017) Anthocyanins control neuroinflammation and consequent memory dysfunction in mice exposed to lipopolysaccharide. Mol Neurobiol 54:3350–3367PubMedCrossRefGoogle Scholar
  98. 98.
    Meireles M et al (2016) Anthocyanin effects on microglia M1/M2 phenotype: consequence on neuronal fractalkine expression. Behav Brain Res 305:223–228PubMedCrossRefGoogle Scholar
  99. 99.
    Faria A et al (2014) Flavonoid metabolites transport across a human BBB model. Food Chem 149:190–196PubMedCrossRefGoogle Scholar
  100. 100.
    Wu HQ et al (2010) The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci 40:204–210PubMedCrossRefGoogle Scholar
  101. 101.
    Salimi Elizei S et al (2017) Kynurenic acid downregulates IL-17/1L-23 axis in vitro. Mol Cell Biochem 431:55–65PubMedCrossRefGoogle Scholar
  102. 102.
    Svobodova A et al (2006) Ultraviolet light induced alteration to the skin. Biomed Pap 150:25–38CrossRefGoogle Scholar
  103. 103.
    Taylor MDCR et al (1996) Sun exposure and skin disease. Annu Rev Med 47:181–191PubMedCrossRefGoogle Scholar
  104. 104.
    Giangreco A et al (2008) Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 7:250–259PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Giacomoni PU (2008) Advancement in skin aging: the future cosmeceuticals. Clin Dermatol 26:364–366PubMedCrossRefGoogle Scholar
  106. 106.
    Baliga MS et al (2006) Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochem Photobiol Sci 5:243–253PubMedCrossRefGoogle Scholar
  107. 107.
    Afaq F et al (2011) Polyphenols: skin Photoprotection and inhibition of Photocarcinogenesis. Mini Rev Med Chem 11:1200–1215PubMedPubMedCentralGoogle Scholar
  108. 108.
    Kao E-S et al (2007) Effects of polyphenols derived from fruit of Crataegus pinnatifida on cell transformation, dermal edema and skin tumor formation by phorbol ester application. Food Chem Toxicol 45:1795–1804PubMedCrossRefGoogle Scholar
  109. 109.
    Kim J et al (1998) Protective effects of green tea polyphenols on the ultraviolet-induced dermal extracellular damage. J Dermatol Sci 16:S127CrossRefGoogle Scholar
  110. 110.
    Afaq F et al (2009) Protective effect of pomegranate derived products on UVB-mediated damage in human reconstituted skin. Exp Dermatol 18:553–561PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lila MA (2004) Anthocyanins and human health: an in vitro investigative approach. J Biomed Biotechnol 2004:306–313PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Tsoyi K et al (2008) Protective effect of anthocyanins from black soybean seed coats on UVB-induced apoptotic cell death in vitro and in vivo. J Agric Food Chem 56:10600–10605PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Chan C-F et al (2010) Influence of purple sweet potato extracts on the UV absorption properties of a cosmetic cream. J Cosmet Sci 61:333–341PubMedPubMedCentralGoogle Scholar
  114. 114.
    Calò R et al (2014) Protective effect of Vaccinium myrtillus extract against UVA- and UVB-induced damage in a human keratinocyte cell line (HaCaT cells). J Photochem Photobiol B Biol 132:27–35CrossRefGoogle Scholar
  115. 115.
    Bae J-Y et al (2009) Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation-induced human dermal fibroblasts. Mol Nutr Food Res 53:726–738PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Cimino F et al (2006) Effect of Cyanidin-3-O-glucoside on UVB-induced response in human keratinocytes. J Agric Food Chem 54:4041–4047PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Murapa P et al (2012) Anthocyanin-rich fractions of blackberry extracts reduce UV-induced free radicals and oxidative damage in keratinocytes. Phytother Res 26:106–112PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Phetpornpaisan P et al (2014) A local Thai cultivar glutinous black rice bran: a source of functional compounds in immunomodulation, cell viability and collagen synthesis, and matrix metalloproteinase-2 and -9 inhibition. J Funct Foods 7:650–661CrossRefGoogle Scholar
  119. 119.
    Cimino F et al (2007) Protective effects of a red orange extract on UVB-induced damage in human keratinocytes. Biofactors 30:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Roh E et al (2017) Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging. Crit Rev Food Sci Nutr 57:1631–1637PubMedCrossRefGoogle Scholar
  121. 121.
    Tarozzi A et al (2007) Protective Effects of Cyanidin-3-O-β-glucopyranoside Against UVA-induced Oxidative Stress in Human Keratinocytes. Photochem Photobiol 81:623–629CrossRefGoogle Scholar
  122. 122.
    Petruk G et al (2017) Malvidin and cyanidin derivatives from açai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts. J Photochem Photobiol B Biol 172:42–51CrossRefGoogle Scholar
  123. 123.
    He Y et al (2017) Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT cells. J Photochem Photobiol B Biol 177:24–31CrossRefGoogle Scholar
  124. 124.
    Afaq F et al (2007) Delphinidin, an Anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J Investig Dermatol 127:222–232PubMedCrossRefGoogle Scholar
  125. 125.
    Sobiepanek A et al (2016) The effect of delphinidin on the mechanical properties of keratinocytes exposed to UVB radiation. J Photochem Photobiol B Biol 164:264–270CrossRefGoogle Scholar
  126. 126.
    Lim T-G et al (2013) NADPH oxidase is a novel target of delphinidin for the inhibition of UVB-induced MMP-1 expression in human dermal fibroblasts. Exp Dermatol 22:428–430PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Hwang J-M et al (2013) Inhibitory effect of liposome-encapsulated anthocyanin on melanogenesis in human melanocytes. Pharm Biol 51:941–947PubMedCrossRefGoogle Scholar
  128. 128.
    Nizamutdinova IT et al (2009) Anthocyanins from black soybean seed coats stimulate wound healing in fibroblasts and keratinocytes and prevent inflammation in endothelial cells. Food Chem Toxicol 47:2806–2812PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Yang JM et al (2016) A quantitative cell modeling and wound-healing analysis based on the electric cell-substrate impedance sensing (ECIS) method. Comput Biol Med 69:134–143PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Evora A et al (2017) The effect of anthocyanins from red wine and blackberry on the integrity of a keratinocyte model using ECIS. Food Funct 8:3989–3998PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Roopchand DE et al (2013) Food-compatible method for the efficient extraction and stabilization of cranberry pomace polyphenols. Food Chem 141:3664.  https://doi.org/10.1016/j.foodchem.2013.06.050CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Gasparrini M et al (2017) Strawberry-based cosmetic formulations protect human dermal fibroblasts against UVA-induced damage. Nutrients 9:605PubMedCentralCrossRefGoogle Scholar
  133. 133.
    Nestle FO et al (2009) Psoriasis. N Engl J Med 361:496–509PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Chamcheu JC et al (2013) Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models. Exp Dermatol 22:342–348.  https://doi.org/10.1111/exd.12140CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Chamcheu Jean Christopher AVM, Stephane E, Mario S, Siddiqui IA, Satyshur KA, Syed DN, Dodwad S-JM, Maria-Ines C-R, Jack LB, Wood GS, Hasan M (2017) Dual inhibition of PI3K/Akt and mTOR by the dietary antioxidant, delphinidin, ameliorates psoriatic features in vitro and in an imiquimod-induced psoriasis-like disease in mice. Antioxid Redox Signal 26:49–69PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Pal HC et al (2015) Topical application of delphinidin reduces psoriasiform lesions in the flaky skin mouse model by inducing epidermal differentiation and inhibiting inflammation. Br J Dermatol 172:354–364PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Austin HR et al (2014) Regulation of late cornified envelope genes relevant to psoriasis risk by plant-derived cyanidin. Biochem Biophys Res Commun 443:1275–1279PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Leung DYM et al (2001) Cellular and immunologic mechanisms in atopic dermatitis. J Am Acad Dermatol 44:S1–S12PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Yamaura K et al (2012) Anthocyanins, but not anthocyanidins, from bilberry (Vaccinium myrtillus L.) alleviate pruritus via inhibition of mast cell degranulation. J Food Sci 77:H262–H2H7PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Afaq F et al (2004) Pomegranate fruit extract modulates UVB-induced activation of nuclear factor kappa B and phosphorylation of mitogen activated protein kinases in normal human epidermal keratinocytes. Cancer Res 45:932Google Scholar
  141. 141.
    Syed DN et al (2006) Photochemopreventive effect of pomegranate fruit extract on UVA-mediated activation of cellular pathways in normal human epidermal keratinocytes. Photochem Photobiol 82:398–405PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Khan N et al (2012) Pomegranate fruit extract inhibits UVB-induced inflammation and proliferation by modulating NF-κB and MAPK signaling pathways in mouse skin†. Photochem Photobiol 88:1126–1134PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Afaq F et al (2008) Inhibitory effect of oral feeding of pomegranate fruit extract on UVB-induced skin carcinogenesis in SKH-1 hairless mice. Cancer Res 68:1246Google Scholar
  144. 144.
    Kwon JY et al (2009) Delphinidin suppresses ultraviolet B-induced cyclooxygenases-2 expression through inhibition of MAPKK4 and PI-3 kinase. Carcinogenesis 30:1932–1940PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Diaconeasa Z et al (2017) Melanoma inhibition by anthocyanins is associated with the reduction of oxidative stress biomarkers and changes in mitochondrial membrane potential. Plant Foods Hum Nutr 72:404PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Roberfroid MB (2000) Concepts and strategy of functional food science: the European perspective. Am J Clin Nutr 71:1660s–1664sPubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    No authors listed (2007) Scientific concepts of functional foods in Europe Consensus document. Br J Nutr 81:S1–S27Google Scholar
  148. 148.
    Astadi IR et al (2009) In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food Chem 112:659–663CrossRefGoogle Scholar
  149. 149.
    Kähkönen MP et al (2003) Antioxidant activity of anthocyanins and their Aglycons. J Agric Food Chem 51:628–633PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Fimognari C et al (2004) Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanidin-3-O-β-glucopyranoside. Biochem Pharmacol 67:2047–2056PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Zhang Y et al (2004) Insulin secretion and cyclooxygenase enzyme inhibition by cabernet sauvignon grape skin compounds. J Agric Food Chem 52:228–233PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Jayaprakasam B et al (2005) Insulin secretion by bioactive anthocyanins and Anthocyanidins present in fruits. J Agric Food Chem 53:28–31PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Andriambeloson E et al (1997) Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Br J Pharmacol 120:1053–1058PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Liu Z et al (2005) Black raspberry extract and fractions contain angiogenesis inhibitors. J Agric Food Chem 53:3909–3915PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Horbowicz M et al (2008) Anthocyanins of fruits and vegetables – their occurrence, analysis and role in human. Veg Crop Res Bull 68:5–22Google Scholar
  156. 156.
    Xu J et al (2015) Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chem 186:90–96PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Xiong S et al (2006) Stability and antioxidant activity of black currant anthocyanins in solution and encapsulated in glucan gel. J Agric Food Chem 54:6201–6208PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Ahmadiani N et al (2014) Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. J Agric Food Chem 62:7524–7531PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Stintzing FC et al (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci Technol 15:19–38CrossRefGoogle Scholar
  160. 160.
    Ma J et al (2000) Constituents of red yeast Rice, a traditional Chinese food and medicine. J Agric Food Chem 48:5220–5225PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Deng G-F et al (2013) Phenolic compounds and bioactivities of pigmented Rice. Crit Rev Food Sci Nutr 53:296–306PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Ficco DBM et al (2018) Production of anthocyanin-enriched flours of durum and soft pigmented wheats by air-classification, as a potential ingredient for functional bread. J Cereal Sci 79:118–126CrossRefGoogle Scholar
  163. 163.
    Ba S et al (2007) Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr 7:123–146Google Scholar
  164. 164.
    Boath AS et al (2012) Berry polyphenols inhibit digestive enzymes: a source of potential health benefits? Food Digestion 3:1–7CrossRefGoogle Scholar
  165. 165.
    Sasaki R et al (2007) Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem Pharmacol 74:1619–1627PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Prior RL et al (2010) Dietary black raspberry anthocyanins do not Alter development of obesity in mice fed an obesogenic high-fat diet. J Agric Food Chem 58:3977–3983PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Prior RL et al (2010) Purified blueberry anthocyanins and blueberry juice Alter development of obesity in mice fed an obesogenic high-fat diet. J Agric Food Chem 58:3970–3976PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Roopchand DE et al (2013) Blueberry polyphenol-enriched soybean flour reduces hyperglycemia, body weight gain and serum cholesterol in mice. Pharmacol Res: Off J Ital Pharmacol Soc 68:59.  https://doi.org/10.1016/j.phrs.2012.11.008CrossRefGoogle Scholar
  169. 169.
    Rojo LE et al (2012) In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chem 131:387–396PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Edirisinghe I et al (2011) Strawberry anthocyanin and its association with postprandial inflammation and insulin. Br J Nutr 106:913–922PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Cortez R et al (2017) Natural pigments: stabilization methods of anthocyanins for food applications. Compr Rev Food Sci Food Saf 16:180–198CrossRefGoogle Scholar
  172. 172.
    He B et al (2017) Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chem 221:1671–1677PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Stebbins NB et al (2017) Stabilization of anthocyanins in blackberry juice by glutathione fortification. Food Funct 8:3459–3468PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Iva Fernandes
    • 1
  • Cláudia Marques
    • 2
    • 3
    • 4
  • Ana Évora
    • 1
  • Ana Faria
    • 1
    • 2
    • 3
  • Conceição Calhau
    • 2
    • 3
  • Nuno Mateus
    • 1
  • Victor de Freitas
    • 1
    Email author
  1. 1.REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of SciencesUniversity of PortoPortoPortugal
  2. 2.Nutrição e Metabolismo, NOVA Medical School, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
  3. 3.ProNutri - Clinical Nutrition & Disease Programming, CINTESIS - Center for Research in Health Technologies and Information SystemsPortoPortugal
  4. 4.Faculty of MedicineUniversity of PortoPortoPortugal

Personalised recommendations