Skip to main content

Gluten-Free Cereals and Pseudocereals: Nutrition and Health

  • Living reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Cereals constitute a staple food for large groups of population worldwide. However, the protein fraction of cereals continues receiving increasing attention from the clinical community because of its close involvement in both the development of immunological processes and intestinal disorders. Thus, together with constant technological innovations to the increasing demands of the consumer, makes necessary to optimize food formulations promoting health outcomes. In this context, beneficial health implications are being reported based on the advantageous nutritional profile of gluten-free cereals, but mostly pseudocereals. The latter represent a good source of proteins (albumins/globulins) reducing the intake of prolamins. Additionally, pseudocereals provide an optimal lipid profile (ratio of saturated versus unsaturated fatty acids) and bioactive compounds with a potential significant impact on the consumer’s health. Currently, the underlying mechanisms by which these beneficial health effects occur still remain unsolved. Moreover, some recent data point to metabolic effects beyond their nutritional value. These could have an important impact on immunological processes, although studies on these aspects result inferential. Future research should approach epidemiologic studies and toward consolidating the mechanisms of action, especially in the human body.

This is a preview of subscription content, log in via an institution.

References

  1. Ulbricht C, Abrams T, Conquer J, Costa D, Grims-Serrano JM, Taylor S, Varguese M (2009) An evidence-based systematic review of amaranth (Amaranthus spp.) by the natural standard research collaboration. J Diet Suppl 6:390–417. https://doi.org/10.3109/19390210903280348

    Article  Google Scholar 

  2. Charmet G (2011) Wheat domestication: lessons for the future. C R Biol 334:212–220. https://doi.org/10.1016/j.crvi.2010.12.013

    Article  Google Scholar 

  3. Alvarez-Jubete L, Arendt EK, Gallagher E (2009) Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Tech 21:106–113. https://doi.org/10.1016/j.tifs.2009.10.014

    Article  Google Scholar 

  4. Marquart L, Wiemer KL, Jones JM, Jacob B (2003) Whole grains health claims in the USA and other efforts to increase whole-grain consumption. Proc Nutr Soc 62(1):151–160. https://doi.org/10.1079/PNS2003242

    Article  Google Scholar 

  5. Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46:207–219. https://doi.org/10.1016/j.jcs.2007.06.010

    Article  CAS  Google Scholar 

  6. Laparra JM, Haros M (2016) Inclusion of ancient Latin-American crops in bread formulation improves intestinal iron absorption and modulates inflammatory markers. Food Funct 7(2):1096–1102. https://doi.org/10.1039/c5fo01197c

    Article  CAS  Google Scholar 

  7. Marventano S, Vetrani C, Vitale M, Godos J, Riccardi G, Grosso G (2017) Whole grain intake and glycaemic control in healthy subjects: a systematic review and meta-analysis of randomized controlled trials. Forum Nutr 9:769. https://doi.org/10.3390/nu9070769

    Google Scholar 

  8. Li Y, Li S, Meng X, Gan RY, Zhang JJ, Li HB (2017) Dietary natural products for prevention and treatment of breast cancer. Forum Nutr 9:728. https://doi.org/10.3390/nu9070728

    Google Scholar 

  9. Jenkins DJA, Boucher BA, Ashbury FD et al (2017) Effect of current dietary recommendations on weight loss and cardiovascular risk factors. J Am Coll Cardiol 69:1103–1112. https://doi.org/10.1016/j.jacc.2016.10.089

    Article  Google Scholar 

  10. Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, Zevallos V, Libermann TA, Dillon S, Freitag TL, Kelly CP, Schuppan D (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 209:2395–2408. https://doi.org/10.1084/jem.20102660

    Article  CAS  Google Scholar 

  11. Kaliszewska A, Martinez V, Laparra JM (2016) Proinflammatory responses driven by non-gluten factors are masked when they appear associated to gliadins. Food Chem Toxicol 95:89–95. https://doi.org/10.1016/j.fct.2016.06.030

    Article  CAS  Google Scholar 

  12. Ojo B, Simenson AJ, O’Hara C, Wu L, Gou X, Peterson SK, Lin D, Smith BJ, Lucas EA (2017) Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity. Br J Nutr 118:241–249. https://doi.org/10.1017/S0007114517002082

    Article  CAS  Google Scholar 

  13. Bergamo P, Maurano F, Mazzarella G, Iaquinto G, Vocca I, Rivelli AR, De Falco E, Gianfrani C, Rossi M (2011) Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease. Mol Nutr Food Res 55:1266–1270. https://doi.org/10.1002/mnfr.201100132

    Article  CAS  Google Scholar 

  14. Caselato-Sousa VM, Ozaki MR, de Almeida EA, Amaya-Farfan J (2014) Intake of heat-expanded amaranth grain reverses endothelial dysfucntion in hypercholesterolemic rabbits. Food Funct 5:3281–3286. https://doi.org/10.1039/c4fo00468j

    Article  CAS  Google Scholar 

  15. Sanz-Penella JM, Laparra JM, Sanz Y, Haros M (2012) Bread supplemented with amaranth (Amaranthus cruentus): effect of phytates on in vitro iron absorption. Plant Foods Hum Nutr 67:50–56. https://doi.org/10.1007/s11130-011-0269-6

    Article  CAS  Google Scholar 

  16. Food and Agriculture Organization of the United Nations (2017) http://www.fao.org/worldfoodsituation/csdb/en/

  17. Food and Agriculture Organization of the United Nations (2011) http://www.fao.org/worldfoodsituation/csdb/en/

  18. US Department of Agriculture (USDA) (2007) National Nutrient Database for Standard References. https://ndb.nal.usda.gov/ndb/

  19. Hurrell RF, Reddy MB, Burri J, Cook JD (2000) An evaluation of EDTA compounds for iron fortification of cerealbased foods. Br J Nutr 84:903–910. https://doi.org/10.1017/S0007114500002531

    CAS  Google Scholar 

  20. Sanz-Penella JM, Wronkowska M, Soral-Śmietana M, Haros M (2013) Effect of whole amaranth flour on bread properties and nutritive value. LWT-Food Sci Tech 50:679–685. https://doi.org/10.1016/j.lwt.2012.07.031

    Article  CAS  Google Scholar 

  21. Chauhan GS, Eskin NAM, Tkachuck R (1992) Nutrients and antinutrients in quinoa seed. Cereal Chem 69:85–88

    CAS  Google Scholar 

  22. Oszvald M, Tamás C, Rakszegi M, Tömösközi S, Békés F, Tamás L (2009) Effects of incorporated amaranth albumins on the functional properties of wheat dough. J Sci Food Agric 89:882–889. https://doi.org/10.1002/jsfa.3528

    Article  CAS  Google Scholar 

  23. Schönlechner R, Drausinger J, Ottenschlaeger V, Jurackova K, Berghofer E (2010) Functional properties of gluten-free pasta produced from amaranth, quinoa and buckwheat. Plant Foods Hum Nutr 65:339–349. https://doi.org/10.1007/s11130-010-0194-0

    Article  Google Scholar 

  24. Jacobsen S-E (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd). Food Rev Int 19:167–177. https://doi.org/10.1081/FRI-120018883

    Article  Google Scholar 

  25. Wolter A, Hager AS, Zannini E, Arendt EK (2014) Influence of sourdough on in vitro starch digestibility and predicted glycemic indices of gluten-free breads. Food Funct 5:564–572. https://doi.org/10.1039/c3fo60505a

    Article  CAS  Google Scholar 

  26. Mithila MV (2015) Khanum F (2015) effectual comparison of quinoa and amaranth supplemented diets in controlling appetite; a biochemical study in rats. J Food Sci Technol 52:6735–6741. https://doi.org/10.1007/s13197-014-1691-1

    Article  CAS  Google Scholar 

  27. Ruiz GA, Opazo-Navarrete M, Meurs M, Minor M, Sala G, van Boekel M, Stieger M, Janssen AE (2016) Denaturation and in vitro gastric digestion of heat-treated quinoa protein isolates obtained at various extraction pH. Food Biophys 11:184–197. https://doi.org/10.1007/s11483-016-9429-4

    Article  Google Scholar 

  28. Tang Y, Tsao R (2017) Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol Nutr Food Res 2017:61(7). https://doi.org/10.1002/mnfr.201600767

    Google Scholar 

  29. Bressani R (2003) Amaranth. In: Caballero B (ed) Encyclopedia of food science and nutrition. Academic Press, Oxford, pp 166–173

    Chapter  Google Scholar 

  30. Berghofer E, Scoenlenchner R (2007) Pseodocereals – An Overview, Department of Food Science and Technology, University of Natural Resources and Applied Life Sciences, Vienna, Austria. http://projekt.sik.se/traditionalgrains/review/Oral%20presentation%20PDF%20files/Berghofer%20.pdf. Accessed 10 Oct 2017

  31. Wood SG, Lawson LD, Fairbanks DJ, Robison LR, Andersen WR (1993) Seed lipid content and fatty acid composition of three quinoa cultivars. J Food Compos Anal 6:41–44. https://doi.org/10.1006/jfca.1993.1005

    Article  CAS  Google Scholar 

  32. Vega-Galvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547. https://doi.org/10.1002/jsfa.4158

    Article  CAS  Google Scholar 

  33. Wijngaard HH, Arent EK (2006) Buckwheat. Cereal Chem 83:391–401. https://doi.org/10.1094/CC-83-0391

    Article  CAS  Google Scholar 

  34. Valcárcel-Yamani B, Caetano S, Lannes S (2012) Applications of quinoa (Chenopodium Quinoa Willd.) and qmaranth (Amaranthus Spp.) and their influence in the nutritional value of cereal based foods. Food and. Public Health 2:265–275. https://doi.org/10.5923/j.fph.20120206.12

    Google Scholar 

  35. Torres García J, Durán Agüero S (2014) Phospholipids: properties and health effects. Nutr Hosp 31:76–83. https://doi.org/10.3305/nh.2015.31.1.7961

    Google Scholar 

  36. Repo-Carrasco R, Espinoza C, Jacobsen S-E (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Rev Int 19:179–189. https://doi.org/10.1081/FRI-120018884

    Article  Google Scholar 

  37. Carrion R, Murphy K, Ganjyal G, Kowalski R, Noratto G (2014) Quinoa as source of bioactive compounds with potential for intestinal health. FASEB J 28:647.18

    Google Scholar 

  38. Venskutonis PR, Kraujalis P (2013) Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Compr Rev Food Sci Food Saf 12:381–412. https://doi.org/10.1111/1541-4337.12021

    Article  CAS  Google Scholar 

  39. Uriyapongson J, Rayas-duarte P (1994) Comparison of yield and properties of amaranth starches using wet and dry-wet milling processes. Cereal Chem 71:571–577

    CAS  Google Scholar 

  40. Caselato-Sousa VM, Amaya-Farfán J (2012) State of knowledge on amaranth grain: a comprehensive review. J Food Sci 77:93–104. https://doi.org/10.1111/j.1750-3841.2012.02645.x

    Article  Google Scholar 

  41. Segura-Nieto M, Shewry PR, Paredes-Lopez O (1994) Globulins of the pseudocereals: Amaranth, quinoa and buckwheat. In: Shewry PR, Casey R (eds) Seed Proteins. Kluwer Academic Publishers, Dordrecht, pp 453–475

    Google Scholar 

  42. Gorinstein S, Pawelzik E, Delgado-Licon E, Haruenkit R, Weisz M, Trakhtenberg S (2002) Characterisation of pseudocereal and cereal proteins by protein and amino acid analyses. J Sci Food Agric 82:886–891. https://doi.org/10.1111/j.1750-3841.2012.02645.x

    Article  CAS  Google Scholar 

  43. Gamel TH, Linssen JP, Alink GM, Mossallem AS, Shekib LA (2004) Nutritional study of raw and popped seed proteins of Amaranthus caudatus L and Amaranthus cruentus L. J Sci Food 84:1153–1158. https://doi.org/10.1002/jsfa.1781

    Article  CAS  Google Scholar 

  44. Berganza BE, Moran AW, Rodriguez GM, Coto NM, Santamaría M, Bressani R (2003) Effect of variety and location on the total fat, fatty acids and squalene content of amaranth. Plant Foods Hum Nutr 58:1–6. https://doi.org/10.1023/B:QUAL.0000041143.24454.0a

    Article  Google Scholar 

  45. Pina-Rodriguez AM, Akoh CC (2010) Composition and oxidative stability of a structured lipid from amaranth oil in a milk-based infant formula. J Food Sci 75:140–146. https://doi.org/10.1111/j.1750-3841.2009.01460.x

    Article  Google Scholar 

  46. Singhal RS, Kulkarni PR (1998) Amaranths as underutilized resource. Int J Food Sci Tech 23:125–139. https://doi.org/10.1111/j.1365-2621.1988.tb00559.x

    Article  Google Scholar 

  47. Budin JT, Breene WM, Putnam DH (1996) Some compositional properties of seeds and oils of eight Amaranthus species. J Am Oil Chem Soc 73:475–481. https://doi.org/10.1007/BF02523922

    Article  CAS  Google Scholar 

  48. Bruni R, Medici A, Guerrini A, Scalia S, Poli F, Muzzoli M, Sacchetti G (2001) Wild Amaranthus Caudatus seed oil, a nutraceutical resource from Ecuadorian flora. J Agric Food Chem 49:5455–5460. https://doi.org/10.1021/jf010385k

    Article  CAS  Google Scholar 

  49. Rocchetti G, Chiodelli G, Giuberti G, Masoero F, Trevisan M, Lucini L (2017) Evaluation of phenolic profile and antioxidant capacity in gluten-free flours. Food Chem 228:367–373. https://doi.org/10.1016/j.foodchem.2017.01.142

    Article  CAS  Google Scholar 

  50. Jing R, Li HQ, Hu CL, Jiang YP, Qin LP, Zheng CJ (2016) Phytochemical and pharmacological profiles of three fagopyrum buckwheats. Int J Mol Sci 17(4). https://doi.org/10.3390/ijms17040589

  51. Steadman K, Burgoon M, Lewis B, Edwardson SE, Obendorf RL (2001) Buckwheat seed milling fractions: description, macronutrient composition and dietary fibre. J Cereal Sci 33:271–278. https://doi.org/10.1006/jcrs.2001.0366

    Article  CAS  Google Scholar 

  52. Steadman K, Burgoon M, Schuster R et al (2000) Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions. J Agric Food Chem 48:2843–2847. https://doi.org/10.1021/jf990709t

    Article  CAS  Google Scholar 

  53. Skrabanja V, Kreft I (1998) Resistant starch formation following autoclaving of buckwheat (Fagopyrum esculentum Moench) groats. An in vitro study. J Agric Food Chem 46:2020–2023. https://doi.org/10.1021/jf970756q

    Article  CAS  Google Scholar 

  54. Qian J, Rayas-Duarte P, Grant L (1998) Partial characterization of buckwheat (Fagopyrum esculentum) starch. Cereal Chem 75:365–373. https://doi.org/10.1094/CCHEM.1998.75.3.365

    Article  CAS  Google Scholar 

  55. Aubrecht E, Biacs PÁ (2001) Characterization of buckwheat grain proteins and its products. Acta Aliment 30:71–80. https://doi.org/10.1556/AAlim.30.2001.1.8

    Article  CAS  Google Scholar 

  56. Cai YZ, Corke H, Whum HX (2004) Amaranth. In: Corke H, Walker CE, Wrigley C (eds) Encyclopedia of grain science. Elsevier, Oxford, pp 1–10

    Google Scholar 

  57. Hager AS, Wolter A, Jacob F, Zannini E, Arendt EK (2012) Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J Cereal Sci 56:239–247. https://doi.org/10.1016/j.jcs.2012.06.005

    Article  CAS  Google Scholar 

  58. Grobelnik MS, Turinek M, Jakop M, Bavec M, Bavec F (2009) Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura 6:43–53

    Google Scholar 

  59. Schoenlechner R, Siebenhandl S, Berghofer E (2008) Pseudocereals, Chapter 7. In: Arendt EK, Bello FD (eds) Gluten-free cereal products and beverages. Academic Press, San Diego, pp 149–190

    Chapter  Google Scholar 

  60. Gross R, Koch F, Malaga I, Miranda AF, Schoeneberger H, Trugo LC (1989) Chemical composition and protein quality of some local Andean food sources. Food Chem 34:25–34. https://doi.org/10.1016/0308-8146(89)90030-7

    Article  CAS  Google Scholar 

  61. Aubrecht E, Horacsek M, Gelencser E, Dworschak E (1998) Investigation of prolamin content of cereals and different plant seeds. Acta Aliment 27:119–125

    CAS  Google Scholar 

  62. Marcone MF, Rickey YY (1997) Evidence for the phosophorylation and glycosylation of the amaranth 11S globulin (Amaranthin). J Food Biochem 21:341–369. https://doi.org/10.1111/j.1745-4514.1997.tb00203.x

    Article  CAS  Google Scholar 

  63. Carrazco-Peña L, Osuna-Castro JA, De León-Rodríguez A, Maruyama N, Toro-Vazquez JF, Morales-Rueda JA, Barba de la Rosa AP (2013) Modification of solubility and heat-induced gelation of Amaranth 11S globulin by protein engineering. J Agric Food Chem 61:3509–3516. https://doi.org/10.1021/jf3050999

    Article  Google Scholar 

  64. Brinegar C, Sine B, Nwokocha L (1996) High-cy steine 2S seed storage proteins from quinoa (Chenopodium quinoa). J Agric Food Chem 44:1621–1623. https://doi.org/10.1021/jf950830+

    Article  CAS  Google Scholar 

  65. Shigemori S, Yonekura S, Sato T, Otani H, Shimosato T (2013) Expression of the immunoreactive buckwheat major allergenic storage protein in Lactococcus lactis. Appl Microbiol Biotechnol 97:3603–3611. https://doi.org/10.1007/s00253-012-4608-9

    Article  CAS  Google Scholar 

  66. Jahaniaval F, Kakuda Y, Marcone MF (2000) Fatty acid and triacylglycerol compositions of seed oils of five Amaranthus accessions and their comparison to other oils. J Am Oil Chem Soc 77:847–852. https://doi.org/10.1007/s11746-000-0135-0

    Article  CAS  Google Scholar 

  67. Ruales J, Nair BM (1993) Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd.) seeds. Food Chem 48:131–136. https://doi.org/10.1016/0308-8146(93)90047-J

    Article  CAS  Google Scholar 

  68. León-Camacho M, García-González DL, Aparicio R (2001) A detailed and comprehensive study of amaranth (Amaranthus cruentus L.) oil fatty profile. Eur Food Res Technol 213:349–355. https://doi.org/10.1007/s002170100340

    Article  Google Scholar 

  69. Vidueiros SM, Curti RN, Dyner LM, Binaghi MJ, Peterson G, Bertero HD, Pallaro AN (2015) Diversity and interrelationships in nutritional traits in cultivated quinoa (Chenopodiumquinoa Willd.) from Northwest Argentina. J Cereal Sci 62:87–93. https://doi.org/10.1016/j.jcs.2015.01.001

    Article  Google Scholar 

  70. Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M et al (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10:13. https://doi.org/10.1186/1741-7015-10-13

    Article  Google Scholar 

  71. Lee MH, Lee JS, Yang HC (2008) α-Amylase inhibitory activity of flower and leaf extracts from buckwheat (Fagopyrum esculentum). J Kor Soc Food Sci Nutrition 37:42–47

    Article  CAS  Google Scholar 

  72. Prakash S, Deshwal S (2013) α/β-amylase activity of Fagopyrum esculentum (buckwheat): a medicinal plant. Janaki Med Coll J Med Sci 1:53–58

    Article  Google Scholar 

  73. Karki R, Kim DW (2013) Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7). J Integr Med 11:246–252. https://doi.org/10.3736/jintegrmed2013036

    Article  Google Scholar 

  74. Alvarez P, Alvarado C, Puerto M, Schlumberger A, Jiménez L, De la Fuente M (2006) Improvement of leukocyte function in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutrition 22:913–921. https://doi.org/10.1016/j.nut.2005.12.012

    Article  CAS  Google Scholar 

  75. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147:629–640. https://doi.org/10.1016/j.cell.2011.09.025

    Article  CAS  Google Scholar 

  76. Schoenlechner R, Drausinger J, Ottenschlaeger V, Jurackova K, Berghofer E (2010) Functional properties of gluten-free pasta produced from amaranth, quinoa and buckwheat. Plant Foods Hum Nutr 65:339–349. https://doi.org/10.1007/s11130-010-0194-0

    Article  CAS  Google Scholar 

  77. Cavaglieri CR, Nishiyama A, Fernandes LC, Curi R, Miles EA, Calder PC (2003) Differential effects of short-chain fatty acids on proliferation and production of pro-and anti-inflammatory cytokines by cultured lymphocytes. Life Sci 73:1683–1690. https://doi.org/10.1016/S0024-3205(03)00490-9

    Article  CAS  Google Scholar 

  78. Vogelmann SA, Seitter M, Singer U, Brandt MJ, Hertel C (2009) Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int J Food Microbiol 130:205–212. https://doi.org/10.1016/j.ijfoodmicro.2009.01.020

    Article  CAS  Google Scholar 

  79. Bianchi F, Rossi EA, Gomes RG, Sivieri K (2014) Potentially synbiotic fermented beverage with aqueous extracts of quinoa (Chenopodium quinoa Willd) and soy. Food Sci Tech Int 21:403–415. https://doi.org/10.1177/1082013214540672

    Article  Google Scholar 

  80. Préstamo G, Pedrazuela A, Peñas E, Lasunción MA, Arroyo G (2003) Role of buckwheat diet on rats as prebiotic and healthy food. Nutr Res 23:803–814. https://doi.org/10.1016/S0271-5317(03)00074-5

    Article  Google Scholar 

  81. Fedirko V, Lukanova A, Bamia C, Trichopolou A, Trepo E, Nöthlings U (2013) Glycemic index, glycemic load, dietary carbohydrate, and dietary fiber intake and risk of liver and biliary tract cancers in western Europeans. Ann Oncol 24:543–553. https://doi.org/10.1093/annonc/mds434

    Article  CAS  Google Scholar 

  82. Atkinson FS, Foster-Powell K, Brand-Miller JC (2008) International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31:2281–2283. https://doi.org/10.2337/dc08-1239

    Article  Google Scholar 

  83. Bacchetti T, Saturni L, Turco I, Ferretti G (2014) The postprandial glucose response to some varieties of commercially available gluten-free pasta: a comparison between healthy and celiac subjects. Food Funct 5:3014–3019. https://doi.org/10.1039/c4fo00745j

    Article  CAS  Google Scholar 

  84. Kim HK, Kim MJ, Cho HY, Kim EK, Shin DH (2006) Antioxidative and anti-diabetic effects of amaranth (Amaranthus esculantus) in streptozotocin-induced diabetic rats. Cell Biochem Funct 24:195–199. https://doi.org/10.1002/cbf.1210

    Article  CAS  Google Scholar 

  85. Stringer DM, Taylor CG, Appah P, Blewett H, Zahradka P (2013) Consumption of buckwheat modulates the post-prandial response of selected gastrointestinal satiety hormones in individuals with type 2 diabetes mellitus. Metabolism 62:1021–1031. https://doi.org/10.1016/j.metabol.2013.01.021

    Article  CAS  Google Scholar 

  86. Su-Que L, Ya-Ning M, Xing-Pu L, Ye-Lun Z, Guang-Yao S, Hui-Juan M (2013) Effect of consumption of micronutrient enriched wheat steamed bread on postprandial plasma glucose in healthy and type 2 diabetic subjects. Nutr J 17:64–71. https://doi.org/10.1186/1475-2891-12-64

    Article  Google Scholar 

  87. Cavallero A, Empilli S, Brighenti F, Stanca AM (2002) High (1→3,1→4)-β-glucan barley fractions in bread making and their effects on human glycemic response. J Cereal Sci 36:59–66. https://doi.org/10.1006/jcrs.2002.0454

    Article  CAS  Google Scholar 

  88. Laparra JM, Haros M (2017) Inclusion of whole flour from Latin-American crops into bread formulations as substitute of wheat delays glucose release and uptake (Personal communication)

    Google Scholar 

  89. Pina-Rodriguez AM (2009) Akoh CC (2009) synthesis and characterization of a structured lipid from amaranth oil as a partial fat substitute in milk-based infant formula. J Agric Food Chem 57:6748–6756. https://doi.org/10.1021/jf901048x

    Article  CAS  Google Scholar 

  90. He J, Klag MJ, Whelton PK, Mo JP, Chen JY, Qian MC, Mo PS (1995) He GQ (1995) oats and buckwheat intakes and cardiovascular disease risk factors in an ethnic minority of China. Am J Clin Nutr 61:366–372

    CAS  Google Scholar 

  91. Zhang HW, Zhang YH, MJ L, Tong WJ, Cao GW (2007) Comparison of hypertension, dyslipidaemia and hyperglycaemia between buckwheat seed-consuming and non-consuming Mongolia-Chinese population in Inner Mongolia, China. Clin Exp Pharmacol Physiol 34:838–844. https://doi.org/10.1111/j.1440-1681.2007.04614.x

    Article  CAS  Google Scholar 

  92. De Carvalho FG, Ovidio PP, Padovan GJ, Jordao Junior AA, MArchini JS, Navarro AM (2014) Metabolic parameters of postmenopausal women after quinoa or corn flakes intake--a prospective and double-blind study. Int J Food Sci Nutr 65:380–385. https://doi.org/10.3109/09637486.2013.866637

    Article  Google Scholar 

  93. Paśko P, Barton H, Zagrodzki P, Izewska A, Krosniak M, Gawlik M, Gawlik M, Gorinstein S (2010) Effect of diet supplemented with quinoa seeds on oxidative status in plasma and selected tissues of high fructose-fed rats. Plant Foods Hum Nutr 65:146–151. https://doi.org/10.1007/s11130-010-0164-6

    Article  Google Scholar 

  94. Lucero López VR, Razzeto GS, Escudero NL, Gimenez MS (2013) Biochemical and molecular study of the influence of Amaranthus Hypochondriacus flour on serum and liver lipids in rats treated with ethanol. Plant Foods Hum Nutr 68:396–402. https://doi.org/10.1007/s11130-013-0388-3

    Article  Google Scholar 

  95. Kayashita J, Shimaoka I, Nakajoh M, Yamazaki M, Kato N (1997) Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-fed rats because of its low digestibility. J Nutr 127:1395–1400

    CAS  Google Scholar 

  96. Tomotake H, Shimaoka I, Kayashita J, Yokoyama F, Nakajoh M, Kato N (2000) A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. J Nutr 130:1670–1674

    CAS  Google Scholar 

  97. Foucault AS, Even P, Lafont R, Dioh W, Veillet S, Tomé D, Huneau JF, Hermier D, Quignard-Boulangé A (2014) Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet. Physiol Behav 128:226–231. https://doi.org/10.1016/j.physbeh.2014.02.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JML thanks Spanish MINECO for his “Ramón y Cajal” contract. BF thanks KNOW Consortium “Healthy Animal – Safe Food,” MS&HE Decision No. 05-1/KNOW2/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Moisés Laparra Llopis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

de Frutos, M.F., Fotschki, B., Musoles, R.F., Llopis, J.M.L. (2018). Gluten-Free Cereals and Pseudocereals: Nutrition and Health. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_60-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics