Advertisement

GLC/HPLC Methods for Saffron (Crocus sativus L.)

  • Asghar Amanpour
  • Hasim Kelebek
  • Serkan Selli
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Saffron (Crocus sativus L.) is provided from the dried and dark-red stigmas of flowers belonging to the family of Iridaceae. Concerning the total content of saffron production, the biggest producer territory in the world is Iran, followed by Spain, India, Italy, Greece, and Morocco. Crocetin, crocin, picrocrocin, and safranal are the four main bioactive compounds in saffron which contribute both organoleptic profile of saffron (pigment, pigment, taste, and odor, respectively) and the health-progressing features. Isolation, identification, and quantification of bioactive compounds from complex and natural matrix of food stuffs are a main and common trouble of initial interest in food quality measurement and characterization. Chromatography is a set of constituents’ separation techniques in a complex mixture. Recently, chromatographic methods were widely used for the isolation, identification, quantification, and analysis of saffron components. Although there are various kinds of chromatographic techniques, more recently a gas chromatography (GC) with a mass spectrometer (MS) detector for the volatile compounds and reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a UV-Vis detector are the techniques of choice, permitting the isolation on an analytical value and the quantification and identification of the metabolites of interest in saffron. However, this chapter principally conducted the analysis of saffron compounds comprising the aroma and most aroma-active compounds using GC-MS and GC-MS-olfactometry setups and bioactive compounds such as carotenoids, flavonoids, and phenolic compounds using HPLC techniques.

Keywords

Saffron Crocus sativus Extraction techniques Aroma and aroma-active Bioactive compounds GC-MS-olfactometry HPLC-MS-DAD 

Abbreviations

1-D

One-dimension

2-D

Two-dimension

3-D

Three-dimension

AEDA

Aroma extract dilution analysis

Charm

Combined hedonic aroma response measurement

DAD

Diode array detector

ESI

Electrospray ionization

FD factor

Flavor dilution factor

GC

Gas chromatography

GC-FID

Gas chromatography-flame ionization detector

GC-MS

Gas chromatography-mass spectrometry

GC-MS-O

Gas chromatography-mass spectrometry-olfactometry

HD

Hydrodistillation

HPLC-DAD-MS

High-performance liquid chromatography with diode array detection and mass spectrometry

HS

Headspace

HTCC

4-Hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde

LLE

Liquid-liquid extraction

MSDE

Microsimultaneous hydrodistillation-extraction

MSDE

Micro-steam distillation extraction

PDA

Photodiode array

PTE

Purge and trap extraction

RP-HPLC

Reversed-phase high-performance liquid chromatography

SAFE

Solvent-assisted flavor evaporation

SBSE

Stir bar sorptive extraction

SD

Steam distillation

SDE

Simultaneous distillation/extraction

SFE

Supercritical fluid extraction

SPME

Solid-phase microextraction

TD

Thermal desorption

USAE/UV-Vis

Ultrasound-assisted extraction/ultraviolet−visible spectroscopy

USE

Ultrasonic solvent extraction

VHS

Vacuum headspace

References

  1. 1.
    Kumar R, Singh V, Devi K et al (2008) State of art of saffron (Crocus sativus L.) agronomy: a comprehensive review. Food Rev Int 25:44–85.  https://doi.org/10.1080/87559120802458503CrossRefGoogle Scholar
  2. 2.
    Melnyk JP, Wang S, Marcone MF (2010) Chemical and biological properties of the world’s most expensive spice: saffron. Food Res Int 43:1981–1989.  https://doi.org/10.1016/j.foodres.2010.07.033CrossRefGoogle Scholar
  3. 3.
    Baghalian K, Sheshtamand MS, Jamshidi AH (2010) Genetic variation and heritability of agro-morphological and phytochemical traits in Iranian saffron (Crocus sativus L.) populations. Ind Crop Prod 31:401–406.  https://doi.org/10.1016/j.indcrop.2009.12.010CrossRefGoogle Scholar
  4. 4.
    Fernández J-A (2004) Biology, biotechnology and biomedicine of saffron. Recent Res Dev Plant Sci 2:127–159. ISBN 81-7736-239-9Google Scholar
  5. 5.
    Maggi L, Carmona M, del Campo CP et al (2009) Worldwide market screening of saffron volatile composition. J Sci Food Agric 89:1950–1954.  https://doi.org/10.1002/jsfa.3679CrossRefGoogle Scholar
  6. 6.
    Ghorbani M (2008) The efficiency of saffron’s marketing channel in Iran. World Appl Sci J 4:523–527. ISSN 1818-4952Google Scholar
  7. 7.
    Gresta F, Lombardo GM, Siracusa L, Ruberto G (2008) Saffron, an alternative crop for sustainable agricultural systems. A review. Agron Sustain Dev 28:95–112.  https://doi.org/10.1051/agro:2007030CrossRefGoogle Scholar
  8. 8.
    Deo B (2003) Growing saffron – the World’s most expensive spice. Crop Food Res (New Zealand Institute for Crop & Food Research) 20:1–4Google Scholar
  9. 9.
    Sereshti H, Heidari R, Samadi S (2014) Determination of volatile components of saffron by optimised ultrasound-assisted extraction in tandem with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Food Chem 143:499–505.  https://doi.org/10.1016/j.foodchem.2013.08.024CrossRefPubMedGoogle Scholar
  10. 10.
    Sampathu SR, Shivashankar S, Lewis YS, Wood AB (1984) Saffron (Crocus Sativus Linn.) – cultivation, processing, chemistry and standardization. CRC Crit Rev Food Sci Nutr 20:123–157.  https://doi.org/10.1080/10408398409527386CrossRefGoogle Scholar
  11. 11.
    Ríos JL, Recio MC, Giner RM, Máñez S (1996) An update review of saffron and its active constituents. Phyther Res 10:189–193.  https://doi.org/10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>3.0.CO;2-CCrossRefGoogle Scholar
  12. 12.
    Grilli Caiola M (2004) Saffron Reproductive Biology. Acta Hortic 650:25–37.  https://doi.org/10.17660/ActaHortic.2004.650.1CrossRefGoogle Scholar
  13. 13.
    Winterhalter P, Straubinger M (2000) Saffron – Renewed Interest In An Ancient Spice. Food Rev Int 16:39–59.  https://doi.org/10.1081/FRI-100100281CrossRefGoogle Scholar
  14. 14.
    Schmidt M, Betti G, Hensel A (2007) Saffron in phytotherapy: pharmacology and clinical uses. WMW Wien Med Wochenschr 157:315–319.  https://doi.org/10.1007/s10354-007-0428-4CrossRefPubMedGoogle Scholar
  15. 15.
    Dhar AK, Mir GM (1997) Saffron in Kashmir-VI: a review of distribution and production. J Herbs Spices Med Plants 4:83–90.  https://doi.org/10.1300/J044v04n04_09CrossRefGoogle Scholar
  16. 16.
    Basker D, Negbi M (1985) Crocetin equivalent of saffron extracts-comparison of 3 extraction methods. J Assoc Publ Analysts 23:65–69. ISSN: 0004-5780Google Scholar
  17. 17.
    Skrubis B (1989) The cultivation in Greece of Crocus sativus L. In Proceedings of the International Conference on Saffron (Crocus Sativus L.), L’Àquilla, Italy, 1990:171–182Google Scholar
  18. 18.
    Alonso GL, Salinas MR, Garijo J, Sanchez-fernandez MA (2001) Composition of crocins and picrocrocin from spanish saffron (Crocus Sativus L.). J Food Qual 24:219–233.  https://doi.org/10.1111/j.1745-4557.2001.tb00604.xCrossRefGoogle Scholar
  19. 19.
    Pfander H, Schurtenberger H (1982) Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry 21:1039–1042.  https://doi.org/10.1016/S0031-9422(00)82412-7CrossRefGoogle Scholar
  20. 20.
    Gregory MJ, Menary RC, Davies NW (2005) Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron. J Agric Food Chem 53:5969–5975.  https://doi.org/10.1021/jf047989jCrossRefPubMedGoogle Scholar
  21. 21.
    Alavizadeh SH, Hosseinzadeh H (2014) Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 64:65–80.  https://doi.org/10.1016/j.fct.2013.11.016CrossRefPubMedGoogle Scholar
  22. 22.
    Assimopoulou AN, Sinakos Z, Papageorgiou VP (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phyther Res 19:997–1000.  https://doi.org/10.1002/ptr.1749CrossRefGoogle Scholar
  23. 23.
    Soeda S, Ochiai T, Shimeno H et al (2007) Pharmacological activities of crocin in saffron. J Nat Med 61:102–111.  https://doi.org/10.1007/s11418-006-0120-9CrossRefGoogle Scholar
  24. 24.
    Papandreou MA, Kanakis CD, Polissiou MG et al (2006) Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its Crocin constituents. J Agric Food Chem 54:8762–8768.  https://doi.org/10.1021/jf061932aCrossRefPubMedGoogle Scholar
  25. 25.
    Kuhn R, Winterstein A (1934) Über die Konstitution des Pikro-crocins und seine Beziehung zu den Carotin-Farbstoffen des Safrans. Ber Dtsch Chem Ges 67:344–357.  https://doi.org/10.1002/cber.19340670239CrossRefGoogle Scholar
  26. 26.
    Buchecker R, Eugster CH (1973) Absolute konfiguration von picrocrocin. Helv Chim Acta 56:1121–1124.  https://doi.org/10.1002/hlca.1973056033CrossRefGoogle Scholar
  27. 27.
    Alonso GL, Salinas MR, Esteban-Infantes FJ, Sánchez-Fernández MA (1996) Determination of Safranal from saffron (Crocus sativus L.) by thermal desorption−gas chromatography. J Agric Food Chem 44:185–188.  https://doi.org/10.1021/jf940665iCrossRefGoogle Scholar
  28. 28.
    Cadwallader KR (2002) Flavor chemistry of saffron. ISSN: 0065-7727Google Scholar
  29. 29.
    Tarantilis PA, Polissiou MG (1997) Isolation and identification of the aroma components from saffron (Crocus sativus). J Agric Food Chem 45:459–462.  https://doi.org/10.1021/jf960105eCrossRefGoogle Scholar
  30. 30.
    Carmona M, Zalacain A, Salinas MR, Alonso GL (2007) A new approach to saffron aroma. Crit Rev Food Sci Nutr 47:145–159.  https://doi.org/10.1080/10408390600626511CrossRefPubMedGoogle Scholar
  31. 31.
    Kanakis CD, Tarantilis PA, Tajmir-Riahi HA, Polissiou MG (2007) Crocetin, Dimethylcrocetin, and Safranal bind human serum albumin: stability and Antioxidative properties. J Agric Food Chem 55:970–977.  https://doi.org/10.1021/jf062638lCrossRefPubMedGoogle Scholar
  32. 32.
    Escribano J, Alonso G-L, Coca-Prados M, Fernández J-A (1996) Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett 100:23–30.  https://doi.org/10.1016/0304-3835(95)04067-6CrossRefPubMedGoogle Scholar
  33. 33.
    Davis JM, Giddings JC (1983) Statistical theory of component overlap in multicomponent chromatograms. Anal Chem 55:418–424.  https://doi.org/10.1021/ac00254a003CrossRefGoogle Scholar
  34. 34.
    Cortes HJ (1992) Developments in multidimensional separation systems. J Chromatogr A 626:3–23.  https://doi.org/10.1016/0021-9673(92)85324-MCrossRefGoogle Scholar
  35. 35.
    Liu Z, Phillips JB (1991) Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci 29:227–231.  https://doi.org/10.1093/chromsci/29.6.227CrossRefGoogle Scholar
  36. 36.
    Kajdan T, Cortes H, Kuppannan K, Young SA (2008) Development of a comprehensive multidimensional liquid chromatography system with tandem mass spectrometry detection for detailed characterization of recombinant proteins. J Chromatogr A 1189:183–195.  https://doi.org/10.1016/j.chroma.2007.11.031CrossRefPubMedGoogle Scholar
  37. 37.
    Mondello L, Tranchida PQ, Dugo P, Dugo G (2008) Comprehensive two-dimensional gas chromatography-mass spectrometry: a review. Mass Spectrom Rev 27:101–124.  https://doi.org/10.1002/mas.20158CrossRefPubMedGoogle Scholar
  38. 38.
    Cortes HJ, Winniford B, Luong J, Pursch M (2009) Comprehensive two dimensional gas chromatography review. J Sep Sci 32:883–904.  https://doi.org/10.1002/jssc.200800654CrossRefPubMedGoogle Scholar
  39. 39.
    Nováková L, Vlčková H (2009) A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta 656:8–35.  https://doi.org/10.1016/j.aca.2009.10.004CrossRefPubMedGoogle Scholar
  40. 40.
    Rödel W, Petrzika M (1991) Analysis of the volatile components of saffron. J High Resolut Chromatogr 14:771–774.  https://doi.org/10.1002/jhrc.1240141118CrossRefGoogle Scholar
  41. 41.
    Narasimhan S, Chand N, Rarjalakshmi D (1992) Saffron: quality evaluation by sensory profile and gas chromatography. J Food Qual 15:303–314.  https://doi.org/10.1111/j.1745-4557.1992.tb00994.xCrossRefGoogle Scholar
  42. 42.
    Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI (2007) HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem 100:1126–1131.  https://doi.org/10.1016/j.foodchen.2005.11.020CrossRefGoogle Scholar
  43. 43.
    Zarghami NS, Heinz DE (1971) Monoterpene aldehydes and isophorone-related compounds of saffron. Phytochemistry 10:2755–2761.  https://doi.org/10.1016/S0031-9422(00)97275-3CrossRefGoogle Scholar
  44. 44.
    Kanakis CD, Daferera DJ, Tarantilis PA, Polissiou MG (2004) Qualitative determination of volatile compounds and quantitative evaluation of Safranal and 4-Hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde (HTCC) in Greek saffron. J Agric Food Chem 52:4515–4521.  https://doi.org/10.1021/jf049808jCrossRefPubMedGoogle Scholar
  45. 45.
    Grosch W (1993) Detection of potent odorants in foods by aroma extract dilution analysis. Trends Food Sci Technol 4:68–73.  https://doi.org/10.1016/0924-2244(93)90187-FCrossRefGoogle Scholar
  46. 46.
    Amanpour A, Sonmezdag AS, Kelebek H, Selli S (2015) GC-MS-olfactometric characterization of the most aroma-active components in a representative aromatic extract from Iranian saffron (Crocus sativus L.). Food Chem 182:251–256.  https://doi.org/10.1016/j.foodchem.2015.03.005CrossRefPubMedGoogle Scholar
  47. 47.
    Chen Y, Guo Z, Wang X, Qiu C (2008) Sample preparation. J Chromatogr A 1184:191–219.  https://doi.org/10.1016/j.chroma.2007.10.026CrossRefPubMedGoogle Scholar
  48. 48.
    van Ruth SM (2001) Methods for gas chromatography-olfactometry: a review. Biomol Eng 17:121–128.  https://doi.org/10.1016/S1389-0344(01)00070-3CrossRefPubMedGoogle Scholar
  49. 49.
    Plutowska B, Wardencki W (2008) Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages – a review. Food Chem 107:449–463.  https://doi.org/10.1016/j.foodchem.2007.08.058CrossRefGoogle Scholar
  50. 50.
    Bonino M, Schellino R, Rizzi C et al (2003) Aroma compounds of an Italian wine (Ruché) by HS–SPME analysis coupled with GC–ITMS. Food Chem 80:125–133.  https://doi.org/10.1016/S0308-8146(02)00340-0CrossRefGoogle Scholar
  51. 51.
    López EF, Gómez EF (2000) Comparison of solvents for determination of monoterpenes in wine using liquid-liquid extraction. Chromatographia 52:798–802.  https://doi.org/10.1007/BF02491007CrossRefGoogle Scholar
  52. 52.
    Nonato EA, Carazza F, Silva FC et al (2001) A headspace solid-phase microextraction method for the determination of some secondary compounds of Brazilian sugar cane spirits by gas chromatography. J Agric Food Chem 49:3533–3539.  https://doi.org/10.1021/jf000896rCrossRefPubMedGoogle Scholar
  53. 53.
    Plutowska B, Wardencki W (2007) Aromagrams–aromatic profiles in the appreciation of food quality. Food Chem 101:845–872CrossRefGoogle Scholar
  54. 54.
    Sides A (2000) Developments in extraction techniques and their application to analysis of volatiles in foods. TrAC Trends Anal Chem 19:322–329.  https://doi.org/10.1016/S0165-9936(99)00225-3CrossRefGoogle Scholar
  55. 55.
    Pollien P, Ott A, Montigon F et al (1997) Hyphenated headspace-gas chromatography-sniffing technique: screening of impact odorants and quantitative Aromagram comparisons. J Agric Food Chem 45:2630–2637.  https://doi.org/10.1021/jf960885rCrossRefGoogle Scholar
  56. 56.
    Maggi L, Carmona M, del Campo CP et al (2008) Multi-residue contaminants and pollutants analysis in saffron spice by stir bar sorptive extraction and gas chromatography–ion trap tandem mass spectrometry. J Chromatogr A 1209:55–60.  https://doi.org/10.1016/j.chroma.2008.09.026CrossRefPubMedGoogle Scholar
  57. 57.
    Zougagh M, Ríos A, Valcárcel M (2006) Determination of total safranal by in situ acid hydrolysis in supercritical fluid media: application to the quality control of commercial saffron. Anal Chim Acta 578:117–121.  https://doi.org/10.1016/j.aca.2006.06.064CrossRefPubMedGoogle Scholar
  58. 58.
    Tarantilis PA, Polissiou M, Manfait M (1994) Separation of picrocrocin, cis-trans-crocins and safranal of saffron using high-performance liquid chromatography with photodiode-array detection. J Chromatogr A 664:55–61.  https://doi.org/10.1016/0021-9673(94)80628-4CrossRefPubMedGoogle Scholar
  59. 59.
    D’Auria M, Mauriello G, Rana GL (2004) Volatile organic compounds from saffron. Flavour Fragr J 19:17–23.  https://doi.org/10.1002/ffj.1266CrossRefGoogle Scholar
  60. 60.
    Jalali-Heravi M, Parastar H, Ebrahimi-Najafabadi H (2009) Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. J Chromatogr A 1216:6088–6097.  https://doi.org/10.1016/j.chroma.2009.06.067CrossRefPubMedGoogle Scholar
  61. 61.
    Sánchez AM, Carmona M, del Campo CP, Alonso GL (2009) Solid-phase extraction for picrocrocin determination in the quality control of saffron spice (Crocus sativus L.). Food Chem 116:792–798.  https://doi.org/10.1016/j.foodchem.2009.03.039CrossRefGoogle Scholar
  62. 62.
    Ammann A, Hinz DC, Addleman RS et al (1999) Superheated water extraction, steam distillation and SFE of peppermint oil. Fresenius J Anal Chem 364:650–653.  https://doi.org/10.1007/s002160051406CrossRefGoogle Scholar
  63. 63.
    Kanasawud P, Crouzet JC (1990) Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. 1. .beta.-Carotene degradation. J Agric Food Chem 38:237–243.  https://doi.org/10.1021/jf00091a052CrossRefGoogle Scholar
  64. 64.
    Zareena AV, Variyar PS, Gholap AS, Bongirwar DR (2001) Chemical investigation of gamma-irradiated saffron (Crocus sativus L.). J Agric Food Chem 49:687–691.  https://doi.org/10.1021/jf000922lCrossRefPubMedGoogle Scholar
  65. 65.
    Golumbic C (1951) Liquid-liquid extraction analysis. Anal Chem 23:1210–1217.  https://doi.org/10.1021/ac60057a004CrossRefGoogle Scholar
  66. 66.
    Cadwallader KR, Baek HH, Cai M (1997) Characterization of saffron flavor by aroma extract dilution analysis. ACS Symp Ser 660:66–79CrossRefGoogle Scholar
  67. 67.
    Augusto F, Leite e Lopes A, Zini CA (2003) Sampling and sample preparation for analysis of aromas and fragrances. TrAC Trends Anal Chem 22:160–169.  https://doi.org/10.1016/S0165-9936(03)00304-2CrossRefGoogle Scholar
  68. 68.
    Cares MG, Vargas Y, Gaete L et al (2010) Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina. Phys Procedia 3:169–178.  https://doi.org/10.1016/j.phpro.2010.01.024CrossRefGoogle Scholar
  69. 69.
    Sujata V, Ravishankar GA, Venkataraman LV (1992) Methods for the analysis of the saffron metabolites crocin, crocetins, picrocrocin and safranal for the determination of the quality of the spice using thin-layer chromatography, high-performance liquid chromatography and gas chromatography. J Chromatogr A 624:497–502.  https://doi.org/10.1016/0021-9673(92)85699-TCrossRefGoogle Scholar
  70. 70.
    Romanik G, Gilgenast E, Przyjazny A, Kamiński M (2007) Techniques of preparing plant material for chromatographic separation and analysis. J Biochem Biophys Methods 70:253–261.  https://doi.org/10.1016/j.jbbm.2006.09.012CrossRefPubMedGoogle Scholar
  71. 71.
    Jadhav D, Rekha BN, Gogate PR, Rathod VK (2009) Extraction of vanillin from vanilla pods: a comparison study of conventional soxhlet and ultrasound assisted extraction. J Food Eng 93:421–426.  https://doi.org/10.1016/j.jfoodeng.2009.02.007CrossRefGoogle Scholar
  72. 72.
    Dai J, Mumper RJ (2010) Plant Phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352.  https://doi.org/10.3390/molecules15107313CrossRefPubMedGoogle Scholar
  73. 73.
    Xu H, Zhang Y, He C (2007) Ultrasonically assisted extraction of Isoflavones from stem of Pueraria lobata (Willd.) Ohwi and its mathematical model. Chin J Chem Eng 15:861–867.  https://doi.org/10.1016/S1004-9541(08)60015-4CrossRefGoogle Scholar
  74. 74.
    Metherel AH, Taha AY, Izadi H, Stark KD (2009) The application of ultrasound energy to increase lipid extraction throughput of solid matrix samples (flaxseed). Prostaglandins Leukot Essent Fat Acids 81:417–423.  https://doi.org/10.1016/j.plefa.2009.07.003CrossRefGoogle Scholar
  75. 75.
    Kadkhodaee R, Hemmati-Kakhki A (2006) Ultrasonic extraction of active compounds from saffron. II Int Symp Saffron Biol Technol 739:417–425Google Scholar
  76. 76.
    Huie CW (2002) A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 373:23–30.  https://doi.org/10.1007/s00216-002-1265-3CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Maggi L, Sánchez AM, Carmona M et al (2011) Rapid determination of safranal in the quality control of saffron spice (Crocus sativus L.). Food Chem 127:369–373.  https://doi.org/10.1016/j.foodchem.2011.01.028CrossRefGoogle Scholar
  78. 78.
    Tonthubthimthong P, Chuaprasert S, Douglas P, Luewisutthichat W (2001) Supercritical CO2 extraction of nimbin from neem seeds – an experimental study. J Food Eng 47:289–293.  https://doi.org/10.1016/S0260-8774(00)00131-XCrossRefGoogle Scholar
  79. 79.
    Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312.  https://doi.org/10.1016/j.tifs.2005.12.004CrossRefGoogle Scholar
  80. 80.
    Lozano P, Delgado D, Gómez D et al (2000) A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography. J Biochem Biophys Methods 43:367–378.  https://doi.org/10.1016/S0165-022X(00)00090-7CrossRefPubMedGoogle Scholar
  81. 81.
    Culleré L, San-Juan F, Cacho J (2011) Characterisation of aroma active compounds of Spanish saffron by gas chromatography–olfactometry: quantitative evaluation of the most relevant aromatic compounds. Food Chem 127:1866–1871.  https://doi.org/10.1016/j.foodchem.2011.02.015CrossRefGoogle Scholar
  82. 82.
    Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148.  https://doi.org/10.1021/ac00218a019CrossRefGoogle Scholar
  83. 83.
    D’Auria M, Mauriello G, Racioppi R, Rana GL (2006) Use of SPME-GC-MS in the study of time evolution of the constituents of saffron aroma: modifications of the composition during storage. J Chromatogr Sci 44:18–21.  https://doi.org/10.1093/chromsci/44.1.18CrossRefGoogle Scholar
  84. 84.
    Du H, Wang J, Hu Z, Yao X (2008) Quantitative structure-retention relationship study of the constituents of saffron aroma in SPME-GC–MS based on the projection pursuit regression method. Talanta 77:360–365.  https://doi.org/10.1016/j.talanta.2008.06.038CrossRefPubMedGoogle Scholar
  85. 85.
    Sarafraz-Yazdi A, Piri moghadam H, Es’haghi Z, Sepehr S (2010) Comparative study of the three sol–gel based solid phase microextraction fibers in extraction of BTEX from water samples using gas chromatography-flame ionization detection. Anal Methods 2:746.  https://doi.org/10.1039/c0ay00175aCrossRefGoogle Scholar
  86. 86.
    Baltussen E, Sandra P, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737–747.  https://doi.org/10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4CrossRefGoogle Scholar
  87. 87.
    He M, Chen B, Hu B (2014) Recent developments in stir bar sorptive extraction. Anal Bioanal Chem 406:2001–2026.  https://doi.org/10.1007/s00216-013-7395-yCrossRefPubMedGoogle Scholar
  88. 88.
    Wilkes JG, Conte ED, Kim Y et al (2000) Sample preparation for the analysis of flavors and off-flavors in foods. J Chromatogr A 880:3–33.  https://doi.org/10.1016/S0021-9673(00)00318-6CrossRefPubMedGoogle Scholar
  89. 89.
    Amini M, Ghoranneviss M, Abdijadid S (2017) Effect of cold plasma on crocin esters and volatile compounds of saffron. Food Chem 235:290–293.  https://doi.org/10.1016/j.foodchem.2017.05.067CrossRefPubMedGoogle Scholar
  90. 90.
    Engel W, Bahr W, Schieberle P (1999) Solvent assisted flavour evaporation – a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur Food Res Technol 209:237–241.  https://doi.org/10.1007/s002170050486CrossRefGoogle Scholar
  91. 91.
    Amanpour A, Kelebek H, Selli S (2017) Aroma constituents of shade-dried aerial parts of Iranian dill (Anethum graveolens L.) and savory (Satureja sahendica Bornm.) by solvent-assisted flavor evaporation technique. J Food Meas Charact 11:1430–1439.  https://doi.org/10.1007/s11694-017-9522-5CrossRefGoogle Scholar
  92. 92.
    Amanpour A, Kelebek H, Selli S (2016) Aroma components of Iranian dried Heracleum persicum fruit (golpar) using solvent-assisted flavour evaporation technique. J Food Nutr Res 55:141–147. ISSN: 1336-8672Google Scholar
  93. 93.
    Selli S, Kelebek H (2011) Aromatic profile and odour-activity value of blood orange juices obtained from Moro and Sanguinello (Citrus sinensis L. Osbeck). Ind Crop Prod 33:727–733.  https://doi.org/10.1016/j.indcrop.2011.01.016CrossRefGoogle Scholar
  94. 94.
    Sanz C, Czerny M, Cid C, Schieberle P (2002) Comparison of potent odorants in a filtered coffee brew and in an instant coffee beverage by aroma extract dilution analysis (AEDA). Eur Food Res Technol 214:299–302.  https://doi.org/10.1007/s00217-001-0459-9CrossRefGoogle Scholar
  95. 95.
    Silva Ferreira AC, Hogg T, Guedes de Pinho P (2003) Identification of key odorants related to the typical aroma of oxidation-spoiled white wines. J Agric Food Chem 51:1377–1381.  https://doi.org/10.1021/jf025847oCrossRefPubMedGoogle Scholar
  96. 96.
    Priser C, Etiévant PX, Nicklaus S, Brun O (1997) Representative champagne wine extracts for gas chromatography olfactometry analysis. J Agric Food Chem 45:3511–3514.  https://doi.org/10.1021/jf970123bCrossRefGoogle Scholar
  97. 97.
    Selli S, Kelebek H, Ayseli MT, Tokbas H (2014) Characterization of the most aroma-active compounds in cherry tomato by application of the aroma extract dilution analysis. Food Chem 165:540–546.  https://doi.org/10.1016/j.foodchem.2014.05.147CrossRefPubMedGoogle Scholar
  98. 98.
    Kesen S, Kelebek H, Selli S (2014) Characterization of the key aroma compounds in Turkish olive oils from different geographic origins by application of aroma extract dilution analysis (AEDA). J Agric Food Chem 62:391–401.  https://doi.org/10.1021/jf4045167CrossRefPubMedGoogle Scholar
  99. 99.
    Selli S, Gubbuk H, Kafkas E, Gunes E (2012) Comparison of aroma compounds in Dwarf Cavendish banana (Musa spp. AAA) grown from open-field and protected cultivation area. Sci Hortic (Amsterdam) 141:76–82.  https://doi.org/10.1016/j.scienta.2012.04.008CrossRefGoogle Scholar
  100. 100.
    Carmona M, Sánchez AM, Ferreres F et al (2007) Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: comparative study of samples from different geographical origins. Food Chem 100:445–450.  https://doi.org/10.1016/j.foodchem.2005.09.065. Published: 2007CrossRefGoogle Scholar
  101. 101.
    Pollien P, Fay LB, Baumgartner M, Chaintreau A (1999) First attempt of odorant quantitation using gas chromatography−olfactometry. Anal Chem 71:5391–5397.  https://doi.org/10.1021/ac990367qCrossRefPubMedGoogle Scholar
  102. 102.
    Ferreira V, Pet’ka J, Aznar M (2002) Aroma extract dilution analysis. Precision and optimal experimental design. J Agric Food Chem 50:1508–1514.  https://doi.org/10.1021/jf010933uCrossRefPubMedGoogle Scholar
  103. 103.
    Iborra JOL, Castellar MR, Canovas MA, Manjon AR (1992) TLC preparative purification of Picrocrocin, HTCC and Crocin from saffron. J Food Sci 57:714–716.  https://doi.org/10.1111/j.1365-2621.1992.tb08079.xCrossRefGoogle Scholar
  104. 104.
    Piana M, Zadra M, de Brum TF et al (2013) Analysis of Rutin in the extract and gel of Viola tricolor. J Chromatogr Sci 51:406–411.  https://doi.org/10.1093/chromsci/bms155CrossRefPubMedGoogle Scholar
  105. 105.
    Heidarbeigi K, Mohtasebi SS, Foroughirad A et al (2015) Detection of adulteration in saffron samples using electronic nose. Int J Food Prop 18:1391–1401.  https://doi.org/10.1080/10942912.2014.915850CrossRefGoogle Scholar
  106. 106.
    Sasidharan S, Chen Y, Saravanan D et al (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8:1. ISSN: 0189-6016PubMedGoogle Scholar
  107. 107.
    de la Torre-Carbot K, Jauregui O, Gimeno E et al (2005) Characterization and quantification of phenolic compounds in olive oils by solid-phase extraction, HPLC-DAD, and HPLC-MS/MS. J Agric Food Chem 53:4331–4340.  https://doi.org/10.1021/jf0501948CrossRefPubMedGoogle Scholar
  108. 108.
    Gazdag M (2000) 2.7 high performance liquid chromatography (HPLC) and related techniques. Prog Pharm Biomed Anal. 4:210–239. ElsevierGoogle Scholar
  109. 109.
    Peng J, Elias JE, Thoreen CC et al (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC−MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50.  https://doi.org/10.1021/pr025556vCrossRefPubMedGoogle Scholar
  110. 110.
    Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614.  https://doi.org/10.1016/j.biotechadv.2015.08.001CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Pferschy-Wenzig E-M, Bauer R (2015) The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav 52:344–362.  https://doi.org/10.1016/j.yebeh.2015.05.037CrossRefPubMedGoogle Scholar
  112. 112.
    Lage M, Cantrell CL (2009) Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci Hortic (Amsterdam) 121:366–373.  https://doi.org/10.1016/j.scienta.2009.02.017CrossRefGoogle Scholar
  113. 113.
    Aschoff S (1818) Beiträge sur kenntnis des safrans. Berl Jb Pharm 19:142–157Google Scholar
  114. 114.
    Speranza G, Dada G, Manitto P et al (1984) 13-cis-Crocin-a new Crocinoid of saffron. Gazz Chim Ital 114:189–192. ISSN: 0016-5603Google Scholar
  115. 115.
    Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. J Chromatogr A 699:107–118.  https://doi.org/10.1016/0021-9673(95)00044-NCrossRefPubMedGoogle Scholar
  116. 116.
    Carmona M, Zalacain A, Sánchez AM et al (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem 54:973–979.  https://doi.org/10.1021/jf052297wCrossRefPubMedGoogle Scholar
  117. 117.
    Sánchez AM, Carmona M, Ordoudi SA et al (2008) Kinetics of individual Crocetin Ester degradation in aqueous extracts of saffron (Crocus sativus L.) upon thermal treatment in the dark. J Agric Food Chem 56:1627–1637.  https://doi.org/10.1021/jf0730993CrossRefPubMedGoogle Scholar
  118. 118.
    Ordoudi SA, de los Mozos Pascual M, Tsimidou MZ (2014) On the quality control of traded saffron by means of transmission Fourier-transform mid-infrared (FT-MIR) spectroscopy and chemometrics. Food Chem 150:414–421.  https://doi.org/10.1016/j.foodchem.2013.11.014CrossRefPubMedGoogle Scholar
  119. 119.
    Anastasaki E, Kanakis C, Pappas C et al (2010) Differentiation of saffron from four countries by mid-infrared spectroscopy and multivariate analysis. Eur Food Res Technol 230:571–577.  https://doi.org/10.1007/s00217-009-1197-7CrossRefGoogle Scholar
  120. 120.
    Breukers S, Øpstad CL, Sliwka H, Partali V (2009) Hydrophilic carotenoids: surface properties and aggregation behavior of the potassium salt of the highly unsaturated diacid norbixin. Helv Chim Acta 92:1741–1747. ISSN: 0018-019XCrossRefGoogle Scholar
  121. 121.
    Serrano-Díaz J, Sánchez AM, Maggi L et al (2011) Synergic effect of water-soluble components on the coloring strength of saffron spice. J Food Compos Anal 24:873–879.  https://doi.org/10.1016/j.jfca.2011.03.014CrossRefGoogle Scholar
  122. 122.
    Castellar MR, Montijano H, Manjón A, Iborra JL (1993) Preparative high-performance liquid chromatographic purification of saffron secondary metabolites. J Chromatogr A 648:187–190.  https://doi.org/10.1016/0021-9673(93)83301-8CrossRefGoogle Scholar
  123. 123.
    PITSIKAS N, ZISOPOULOU S, TARANTILIS P et al (2007) Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats’ memory. Behav Brain Res 183:141–146.  https://doi.org/10.1016/j.bbr.2007.06.001CrossRefPubMedGoogle Scholar
  124. 124.
    Li N, Lin G, Kwan Y-W, Min Z-D (1999) Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. J Chromatogr A 849:349–355.  https://doi.org/10.1016/S0021-9673(99)00600-7CrossRefPubMedGoogle Scholar
  125. 125.
    Winterstein E, Teleczky J (1922) Constituents of the saffron. I. Picrocrocin. Helv Chim Acta 5:376–400CrossRefGoogle Scholar
  126. 126.
    Straubinger M, Jezussek M, Waibel R, Winterhalter P (1997) Novel Glycosidic constituents from saffron. J Agric Food Chem 45:1678–1681.  https://doi.org/10.1021/jf960861kCrossRefGoogle Scholar
  127. 127.
    Straubinger M, Bau B, Eckstein S et al (1998) Identification of novel glycosidic aroma precursors in Saffron (Crocus sativus L.). J Agric Food Chem 46:3238–3243.  https://doi.org/10.1021/jf980119fCrossRefGoogle Scholar
  128. 128.
    Carmona M, Zalacain A, Alonso GL (2006) The aroma, in the chemical composition of saffron: color, taste and aroma, ed. by. Editorial Bomarzo SL, Albacete, pp. 123–124Google Scholar
  129. 129.
    Sánchez AM, Carmona M, Jarén-Galán M et al (2011) Picrocrocin kinetics in aqueous saffron spice extracts (Crocus sativus L.) upon thermal treatment. J Agric Food Chem 59:249–255.  https://doi.org/10.1021/jf102828vCrossRefPubMedGoogle Scholar
  130. 130.
    Orfanou O, Tsimidou M (1996) Evaluation of the colouring strength of saffron spice by UV – vis spectrometry. Food Chem 57:463–469CrossRefGoogle Scholar
  131. 131.
    Lozano P, Castellar M, Simancas M, Iborra J (1999) A quantitative high-performance liquid chromatographic method to analyse commercial saffron (Crocus sativus L.) products. J Chromatogr A 830:477–483.  https://doi.org/10.1016/S0021-9673(98)00938-8CrossRefGoogle Scholar
  132. 132.
    Hamid B, Sam S, Islam T et al (2009) The free radical scavenging and the lipid peroxidation inhibition of Crocin isolated from Kashmiri saffron (Crocus sativus) occurring in northern part of India. Int J Pharm Tech Res 1:1317–1321. ISSN: 0974-4304Google Scholar
  133. 133.
    Hosseinzadeh H, Sadeghnia HR, Ghaeni FA et al (2011) Effects of saffron (Crocus sativus L.) and its active constituent, Crocin, on recognition and spatial memory after chronic cerebral Hypoperfusion in rats. Phyther Res 26:381.  https://doi.org/10.1002/ptr.3566CrossRefGoogle Scholar
  134. 134.
    Nilakshi N, Gadiya RV, Abhyankar M, Champalal KD (2011) Detailed profile of Crocus sativus. Int J Pharma Bio Sci 2:530–540. ISSN: 0975-6299Google Scholar
  135. 135.
    Gismondi A, Serio M, Canuti L, Canini A (2012) Biochemical, antioxidant and antineoplastic properties of Italian saffron (<i>Crocus sativus L<i>.). Am J Plant Sci 3:1573–1580.  https://doi.org/10.4236/ajps.2012.311190CrossRefGoogle Scholar
  136. 136.
    Bolhasani A, Bathaie SZ, Yavari I et al (2005) Separation and purification of some components of Iranian saffron. Asian J Chem 17:725. ISSN: 0970-7077Google Scholar
  137. 137.
    Madan CL, Kapur BM, Gupta US (1966) Saffron. Econ Bot 20:377–385CrossRefGoogle Scholar
  138. 138.
    Cossignani L, Urbani E, Simonetti MS et al (2014) Characterisation of secondary metabolites in saffron from Central Italy (Cascia, Umbria). Food Chem 143:446–451.  https://doi.org/10.1016/j.foodchem.2013.08.020CrossRefPubMedGoogle Scholar
  139. 139.
    Zougagh M, Ríos A, Valcárcel M (2005) An automated screening method for the fast, simple discrimination between natural and artificial colorants in commercial saffron products. Anal Chim Acta 535:133–138.  https://doi.org/10.1016/j.aca.2004.11.060CrossRefGoogle Scholar
  140. 140.
    Corti P, Mazzei E, Ferri S et al (1996) High performance thin layer chromatographic quantitative analysis of Picrocrocin and Crocetin, active principles of saffron (Crocus sativus L.-Iridaceae): a new method. Phytochem Anal 7:201–203.  https://doi.org/10.1002/(SICI)1099-1565(199607)7:4<201::AID-PCA304>3.0.CO;2-4CrossRefGoogle Scholar
  141. 141.
    Lech K, Witowska-Jarosz J, Jarosz M (2009) Saffron yellow: characterization of carotenoids by high performance liquid chromatography with electrospray mass spectrometric detection. J Mass Spectrom 44:1661.  https://doi.org/10.1002/jms.1631CrossRefPubMedGoogle Scholar
  142. 142.
    Pfister S, Meyer P, Steck A, Pfander H (1996) Isolation and structure elucidation of carotenoid−Glycosyl esters in Gardenia fruits (Gardenia jasminoides Ellis) and saffron (Crocus sativus Linne). J Agric Food Chem 44:2612–2615.  https://doi.org/10.1021/jf950713eCrossRefGoogle Scholar
  143. 143.
    Sugiura M, Shoyama Y, Saito H, Abe K (1994) Crocin (crocetin di-gentiobiose ester) prevents the inhibitory effect of ethanol on long-term potentiation in the dentate gyrus in vivo. J Pharmacol Exp Ther 271:703–707. ISSN: 0022-3565PubMedGoogle Scholar
  144. 144.
    Zalacain A, Ordoudi SA, Díaz-Plaza EM et al (2005) Near-infrared spectroscopy in saffron quality control: determination of chemical composition and geographical origin. J Agric Food Chem 53:9337–9341.  https://doi.org/10.1021/jf050846sCrossRefPubMedGoogle Scholar
  145. 145.
    García-Rodríguez MV, López-Córcoles H, Alonso GL et al (2017) Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. Food Chem 221:838–843.  https://doi.org/10.1016/j.foodchem.2016.11.089CrossRefPubMedGoogle Scholar
  146. 146.
    D’Archivio AA, Giannitto A, Maggi MA, Ruggieri F (2016) Geographical classification of Italian saffron (Crocus sativus L.) based on chemical constituents determined by high-performance liquid-chromatography and by using linear discriminant analysis. Food Chem 212:110–116.  https://doi.org/10.1016/j.foodchem.2016.05.149CrossRefPubMedGoogle Scholar
  147. 147.
    Rodríguez-Neira L, Lage-Yusty MA, López-Hernández J (2014) Influence of culinary processing time on Saffron’s bioactive compounds (Crocus sativus L.). Plant Foods Hum Nutr 69:291–296.  https://doi.org/10.1007/s11130-014-0447-4CrossRefPubMedGoogle Scholar
  148. 148.
    Valle García-Rodríguez M, Serrano-Díaz J, Tarantilis PA et al (2014) Determination of saffron quality by high-performance liquid chromatography. J Agric Food Chem 62:8068–8074.  https://doi.org/10.1021/jf5019356CrossRefPubMedGoogle Scholar
  149. 149.
    Karimi E, Oskoueian E, Hendra R, Jaafar HZE (2010) Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 15:6244–6256.  https://doi.org/10.3390/molecules15096244CrossRefPubMedGoogle Scholar
  150. 150.
    Martinez-Tome M, Jimenez AM, Ruggieri S et al (2001) Antioxidant properties of Mediterranean spices compared with common food additives. J Food Prot 64:1412–1419. ISSN: 0362-028XCrossRefPubMedGoogle Scholar
  151. 151.
    NORBAK R, KONDO T (1999) Flavonol glycosides from flowers of Crocus speciosus and C. antalyensis. Phytochemistry 51:1113–1119.  https://doi.org/10.1016/S0031-9422(99)00109-0CrossRefGoogle Scholar
  152. 152.
    Makhlouf H, Saksouk M, Habib J, Chahine R (2011) Determination of antioxidant activity of saffron taken from the flower of Crocus sativus grown in Lebanon. Afr J Biotechnol 10:8093–8100. ISSN: 1684-5315CrossRefGoogle Scholar
  153. 153.
    Asdaq SMB, Inamdar MN (2010) Potential of Crocus sativus (saffron) and its constituent, Crocin, as Hypolipidemic and antioxidant in rats. Appl Biochem Biotechnol 162:358–372.  https://doi.org/10.1007/s12010-009-8740-7CrossRefPubMedGoogle Scholar
  154. 154.
    Straubinger M, Jezussek M, Waibel R, Winterhalter P (1997) Two Kaempferol Sophorosides from Crocus Sativus. Nat Prod Lett 10:213–216.  https://doi.org/10.1080/10575639708041197CrossRefGoogle Scholar
  155. 155.
    Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 12:155–160.  https://doi.org/10.1016/S0958-1669(00)00192-0CrossRefPubMedGoogle Scholar
  156. 156.
    Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504.  https://doi.org/10.1016/S0031-9422(00)00235-1CrossRefPubMedGoogle Scholar
  157. 157.
    Hosseinzadeh H, Karimi G, Niapoor M (2004) Antidepressant effect of Crocus sativus L. stigma extracts and their constituents, crocin and safranal, in mice. Acta Hortic 650:435–445.  https://doi.org/10.17660/ActaHortic.2004.650.54CrossRefGoogle Scholar
  158. 158.
    Bouhsain Z, Garrigues S, de la Guardia M (1997) PLS-UV spectrophotometric method for the simultaneous determination of paracetamol, acetylsalicylic acid and caffeine in pharmaceutical formulations. Fresenius J Anal Chem 357:973–976.  https://doi.org/10.1007/s002160050284CrossRefGoogle Scholar
  159. 159.
    Espinosa-Mansilla A, Salinas F, Zamoro A (1994) Simultaneous determination of chlorpyrifos and carbaryl by differential degradation using diode-array spectrophotometry optimized by partial least squares. Analyst 119:1183.  https://doi.org/10.1039/an9941901183CrossRefGoogle Scholar
  160. 160.
    de la Peña AM, Durán-Merás I, Moreno MD et al (1995) Resolution of ternary mixtures of salicylic, salicyluric and gentisic acids by partial least squares and principal component regression: optimization of the scanning path in the excitation-emission matrices. Fresenius J Anal Chem 351:571–576. ISSN: 0937-0633CrossRefGoogle Scholar
  161. 161.
    Berzas NJJ, Gomez LMA, Murillo PJA, Amador-Hernandez J (1998) Simultaneous fluorimetric determination of pyridoxal, pyridoxamine and pyridoxic acid by partial least squares using non-linear variable angle synchronous spectra. Analyst 123:483–488. ISSN: 0003-2654CrossRefGoogle Scholar
  162. 162.
    Haghighi B, Feizy J, Kakhki AH (2007) LC determination of adulterated saffron prepared by adding styles colored with some natural colorants. Chromatographia 66:325–332.  https://doi.org/10.1365/s10337-007-0321-8CrossRefGoogle Scholar
  163. 163.
    Carmona M, Zalacaín A, Rodríguez MI et al (2003) Comparison of different extraction procedures and HPLC methods to detect crocins in saffron. I Int Symp Saffron Biol Biotechnol 650:303–306Google Scholar
  164. 164.
    Loskutov A, Beninger C, Hosfield G, Sink K (2000) Development of an improved procedure for extraction and quantitation of safranal in stigmas of Crocus sativus L. using high performance liquid chromatography. Food Chem 69:87–95.  https://doi.org/10.1016/S0308-8146(99)00246-0CrossRefGoogle Scholar
  165. 165.
    Rambla FJ, Garrigues S, de la Guardia M (1997) PLS-NIR determination of total sugar, glucose, fructose and sucrose in aqueous solutions of fruit juices. Anal Chim Acta 344:41–53.  https://doi.org/10.1016/S0003-2670(97)00032-9CrossRefGoogle Scholar
  166. 166.
    Verma RS, Middha D (2010) Analysis of saffron (Crocus sativus L. Stigma) components by LC–MS–MS. Chromatographia 71:117–123.  https://doi.org/10.1365/s10337-009-1398-zCrossRefGoogle Scholar
  167. 167.
    Tarantilis PA, Beljebbar A, Manfait M, Polissiou M (1998) FT-IR, FT-Raman spectroscopic study of carotenoids from saffron (Crocus sativus L.) and some derivatives. Spectrochim Acta A Mol Biomol Spectrosc 54:651–657.  https://doi.org/10.1016/S1386-1425(98)00024-9CrossRefGoogle Scholar
  168. 168.
    Anastasaki E, Kanakis C, Pappas C et al (2009) Geographical differentiation of saffron by GC–MS/FID and chemometrics. Eur Food Res Technol 229:899–905.  https://doi.org/10.1007/s00217-009-1125-xCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Food Engineering, Faculty of AgricultureCukurova UniversityAdanaTurkey
  2. 2.Department of Food Engineering, Faculty of Engineering and Natural SciencesAdana Science and Technology UniversityAdanaTurkey

Personalised recommendations