Skip to main content

Theobroma cacao and Theobroma grandiflorum: Bioactive Compounds and Associated Health Benefits

  • Living reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The genus Theobroma comprises about 20 species, among them cocoa (Theobroma cacao L.), with the highest economic importance, and cupuassu (T. grandiflorum), of growing interest. Chemical compositions of cocoa and cupuassu unprocessed fresh seeds, pulps, and products (chocolate and cupulate) are presented, and the effects of processing in profile and quantity of the bioactive compounds, namely polyphenols and methylxanthines, are discussed. Dietary consumption of cocoa and dark chocolate has been associated to beneficial effects on health, mainly related to polyphenols and their antioxidant and anti-inflammatory activities affecting important signaling pathways and also modulating intestinal microbiota. Vasodilation and cardioprotective effects of cocoa polyphenols are related to release of nitric oxide (NO) through activation of endothelial NO synthase. Significant improvement of insulin resistance and flow-mediated dilatation (FMD) and reductions in diastolic blood pressure and mean arterial pressure were reported. In particular, the effects of cocoa and cupuassu polyphenols on obesity and glucose metabolism are reviewed.

This is a preview of subscription content, log in via an institution.

Abbreviations

AA:

Arachidonic acid

ALT:

Alanine aminotransferase

AMPK:

AMP-activated protein kinase

AST:

Aspartate aminotransferase

BMI:

Body mass index

DW:

Dry weight

FA:

Fatty acid

FFA:

Free fatty acids

FMD:

Flow-mediated dilatation

FW:

Fresh weight

GK:

Glucokinase

GLP:

Glucagon-like peptide

GLUT:

Glucose transporter

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GS:

Glycogen synthase

GSK3:

Glycogen synthase kinase 3

HDLc:

High-density lipoprotein

HF:

High fat

HO-1:

Heme oxygenase-1

HOMA-B:

Homeostatic model assessment of cell function

IRS:

Insulin receptor substrate

JNK:

Jun N-terminal kinase

LDLc:

Low-density lipoprotein

MDA:

Malondialdehyde

MES-WAT:

Mesenteric white adipose tissue

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid 2-related factor

PEPCK:

Phosphoenolpyruvate carboxykinase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

T2D:

Type 2 diabetes

Tb/Cf ratio:

Theobromine/caffeine ratio

TBARS:

Thiobarbituric acid reactive substances

TC:

Total cholesterol

TG:

Triacylglycerol

TLR4:

Toll-like receptor 4

UCP:

Uncoupling protein

VLDLc:

Very low-density lipoprotein

References

  1. Rusconi M, Conti A (2010) Theobroma cacao L., the food of the gods: a scientific approach beyond myths and claims. Pharmacol Res 61:5–13

    Article  CAS  Google Scholar 

  2. Nazaré RFR, Barbosa WC, Viégas RMF (1990) Processamento das sementes de cupuaçu para obtenção de cupulate, 1st edition; Boletim de Pesquisa EMBRAPA, n.108, EMBRAPA – CPATU (Empresa Brasileira de Pesquisa Agropecuária – Centro de Pesquisa Agropecuária do Trópico Úmido), Belém, 38p

    Google Scholar 

  3. Wollgast J, Anklam E (2000) Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res Int 33(6):423–447

    Article  CAS  Google Scholar 

  4. Caprioli G, Fiorini D, Maggi F, Nicoletti M, Ricciutelli M, Toniolo C, Prosper B, Vittori S, Sagratini G (2016) Nutritional composition, bioactive compounds and volatile profile of cocoa beans from different regions of Cameroon. Int J Food Sci Nutr 67(4):422–430

    Article  CAS  Google Scholar 

  5. Torres-Moreno M, Torrescasana E, Salas-Salvadò J, Blanch C (2015) Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chem 166:125–132

    Article  CAS  Google Scholar 

  6. Pugliese AG, Tomas-Barberan FA, Truchado P, Genovese MI (2013) Flavonoids, proanthocyanidins, vitamin C, and antioxidant activity of Theobroma grandiflorum (Cupuassu) pulp and seeds. J Agric Food Chem 61(11):2720–2728

    Article  CAS  Google Scholar 

  7. Pugliese AG (2010). Compostos fenólicos do cupuaçu (Theobroma grandiflorum) e do cupulate: composição e possíveis benefícios. Dissertation, University of São Paulo

    Google Scholar 

  8. Lannes SCS, Medeiros ML, Gioielli LA (2004) Rheological properties of cupuassu and cocoa fats. Grasas Aceites 55(2):115–121

    Article  CAS  Google Scholar 

  9. Lannes SCS, Medeiros ML, Amaral RL (2002) Formulação de “chocolate” de cupuaçu e reologia do produto líquido. Braz J Pharm Sci 38:463–467

    Google Scholar 

  10. Lucas V (2001) Fracionamento térmico e obtenção de gorduras de cupuaçu alternativas à manteiga de cacau para uso na fabricação de chocolate. 195 p. Phd thesis – Faculdade de Engenharia Química, UNICAMP, Campinas. http://www.bibliotecadigital.unicamp.br/document/?code=vtls000235715. Accessed 3 July 2017

  11. Bezerra CV, Rodrigues AMD, de Oliveira PD, da Silva DA, da Silva LHM (2017) Technological properties of amazonian oils and fats and their applications in the food industry. Food Chem 221:1466–1473. https://doi.org/10.1016/j.foodchem.2016.11.004

    Article  CAS  Google Scholar 

  12. Salgado JM, Rodrigues BS, Donado-Pestana CM, Dias CTD, Morzelle MC (2011) Cupuassu (Theobroma grandiflorum) peel as potential source of dietary Fiber and phytochemicals in whole-bread preparations. Plant Foods Hum Nutr 66(4):384–390

    Article  CAS  Google Scholar 

  13. Belscak A, Komes D, Horzic D, Ganic KK, Karlovic D (2009) Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Res Int 42(5–6):707–716

    Article  CAS  Google Scholar 

  14. Petyaev IM, Bashmakov YK (2016) Cocobiota: implications for human health. J Nutr Metab:7906927. 3 pages

    Google Scholar 

  15. Franco R, Oñatibia-Astibia A, Martínez-Pinilla E (2013) Health benefits of Methylxanthines in cacao and chocolate. Forum Nutr 5(10):4159–4173

    CAS  Google Scholar 

  16. Carrillo LC, Londoño-Londoño J, Gil A (2014) Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Res Int 60:273–280

    Article  CAS  Google Scholar 

  17. Peláez PP, Bardón I, Camasca P (2016) Methylxanthine and catechin content of fresh and fermented cocoa beans, dried cocoa beans, and cocoa liquor. Sci Agropecu 7(4):355–365

    Article  Google Scholar 

  18. Trognitz B, Cros E, Assemat S, Davrieux F, Forestier-Chiron N, Ayestas E, Kuant A, Scheldeman X, Hermann M (2013) Diversity of cacao trees in Waslala, Nicaragua: associations between genotype spectra, product quality and yield potential. PLoS One 8(1):e54079

    Article  CAS  Google Scholar 

  19. Camu N, De Winter T, Addo SK, Takrama JS, Bernaert H, De Vuyst L (2008) Fermentation of cocoa beans: influence of microbial activities and polyphenol concentrations on the flavour of chocolate. J Sci Food Agr 88(13):2288–2297

    Article  CAS  Google Scholar 

  20. Lo Coco F, Lanuzza F, Micali G, Cappellano G (2007) Determination of theobromine, theophylline, and caffeine in by-products of Cupuacu and cacao seeds by high-performance liquid chromatography. J Chromatogr Sci 45:273–275

    Article  CAS  Google Scholar 

  21. Bruna C, Eichholz I, Rohn S, Kroh LW, Huyskens-Keil S (2009) Bioactive compounds and antioxidant activity of cocoa hulls (Theobroma cacao L.) from different origins. J App Bot Food Qual 83(1):9–13

    CAS  Google Scholar 

  22. Yang H, Protiva P, Cui B, Ma C, Baggett S, Hequet V, Mori S, Weinstein IB, Kennelly EJ (2003) New bioactive polyphenols from Theobroma grandiflorum (“cupuaçu”). J Nat Prod 66:1501–1504

    Article  CAS  Google Scholar 

  23. Kuskoski EM, Asuero AG, Troncoso AM, Mancini-Filho J, Fett R (2005) Aplicación de diversos métodos químicos para determinar actividad antioxidante em pulpa de frutos. Ciênc Tecnol Aliment 25:726–732

    Article  CAS  Google Scholar 

  24. McShea A, Ramiro-Puig E, Munro SB, Casadesus G, Castell M, Smith MA (2008) Clinical benefit and preservation of flavonols in dark chocolate manufacturing. Nutr Rev 66(11):630–641

    Article  Google Scholar 

  25. Oracz J, Zyzelewicz D, Nebesny E (2015) The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: a review. Crit Rev Food Sci Nutr 55(9):1176–1192

    Article  CAS  Google Scholar 

  26. Andres-Lacueva C, Monagas M, Khan N, Izquierdo-Pulido M, Urpi-Sarda M, Permanyer J, Lamuela-Raventos RM (2008) Flavanol and flavonol contents of cocoa powder products: influence of the manufacturing process. J Agric Food Chem 56(9):3111–3117

    Article  CAS  Google Scholar 

  27. Todorovic V, Milenkovic M, Vidovic B, Todorovic Z, Sobajic S (2017) Correlation between antimicrobial, antioxidant activity, and polyphenols of alkalized/nonalkalized cocoa powders. J Food Sci 82(4):1020–1027

    Article  CAS  Google Scholar 

  28. Tomas-Barberan FA, Cienfuegos-Jovellanos E, Marin A, Muguerza B, Gil-Izquierdo A, Cerda B, Zafrilla P, Morillas J, Mulero J, Ibarra A, Pasamar MA, Ramon D, Espin JC (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55(10):3926–3935

    Article  CAS  Google Scholar 

  29. Hooper L, Kay C, Abdelhamid A (2012) Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 95(3):740–775

    Article  CAS  Google Scholar 

  30. Magrone T, Russo MA, Jirillo E (2017) Cocoa and dark chocolate polyphenols: from biology to clinical applications. Front Immunol 8:677

    Article  Google Scholar 

  31. Bohannon J, Koch D, Homm P, Driehaus A (2015) Chocolate with high cocoa content as a weight-loss accelerator. Int Arch Med 8(55):1–8

    Google Scholar 

  32. Farhat G, Drummond S, Fyfe L, Al-Dujaili EAS (2014) Dark chocolate: an obesity paradox or a culprit for weight gain? Phytother Res 28(6):791–797

    Article  CAS  Google Scholar 

  33. Rabadan-Chávez G, Quevedo-Corona L, Garcia AM, Reyes-Maldonado E, Jaramillo-Flores ME (2016) Cocoa powder, cocoa extract and epicatechin attenuate hypercaloric diet-induced obesity through enhanced β-oxidation and energy expenditure in white adipose tissue. J Funct Foods 20:54–67

    Article  Google Scholar 

  34. Cuenca-García M, Ruiz JR, Ortega FB, Castillo MJ (2014) HELENA study group association between chocolate consumption and fatness in European adolescents. Nutr 30:236–239

    Article  Google Scholar 

  35. Golomb BA, Koperski S, White HL (2012) Association between more frequent chocolate consumption and lower body mass index. Arch Int Med 172(6):519–521

    Article  Google Scholar 

  36. Strandberg TE, Strandberg AY, Pitkälä K, Salomaa VV, Tilvis RS et al (2008) Chocolate, well-being and health among elderly men. Eur J Clin Nutr 62:247–253

    Article  CAS  Google Scholar 

  37. Davison K, Coates AM, Buckley JD, Howe PRC (2008) Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjects. Int J Obes 32(8):1289–1296

    Article  CAS  Google Scholar 

  38. Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P, Ferri C (2005) Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 46(2):398–405

    Article  CAS  Google Scholar 

  39. Shrime MG, Bauer SR, McDonald AC, Chowdhury NH, Coltart CEM, Ding EL (2011) Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. J Nutr 141(11):1982–1988

    Article  CAS  Google Scholar 

  40. Yeh M, Platkin C, Estrella P, Allinger D, Elbaum R, Brumaru B, Wyka K (2016) Chocolate consumption and health beliefs and its relation to BMI in college students. J Obes Weight Loss 2:1–7

    Google Scholar 

  41. Taubert D, Roesen R. Lehmann C, Jung N, Schomig E (2007) Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide. JAMA. 298:49–60

    Google Scholar 

  42. Nickols-Richardson SM, Piehowski KE, Metzgar CJ, Miller, DL, Preston AG (2014) Changes in body weight, blood pressure and selected metabolic biomarkers with an energy-restricted diet including twice daily sweet snacks and once daily sugar-free beverage. Nutrition Research and Practice 8(6):695–704

    Google Scholar 

  43. Desch S, Kobler D, Schmidt J, Sonnabend M, Adams V, Sareban M, Thiele H (2010) Low vs. Higher-Dose Dark Chocolate and Blood Pressure in Cardiovascular High-Risk Patients. Am J Hypertens 23(6):694–700

    Google Scholar 

  44. Greenberg JA, Buijsse B (2013) Habitual Chocolate Consumption May Increase Body Weight in a Dose-Response Manner. PLoS ONE 8(8)

    Google Scholar 

  45. Ali F, Ismail A, Esa NM, Pei CP, Kersten S (2015) Hepatic genome-wide expression of lipid metabolism in diet-induced obesity rats treated with cocoa polyphenols. J Funct Foods 17: 969–978

    Google Scholar 

  46. Dorenkott MR, Griffin LE, Goodrich KM, Thompson-Witrick KA, Fundaro G, Ye L, Neilson AP (2014) Oligomeric cocoa procyanidins possess enhanced bioactivity compared to monomeric and polymeric cocoa procyanidins for preventing the development of obesity, insulin resistance, and impaired glucose tolerance during high-fat feeding. J Agric Food Chem 62(10):2216–2227

    Google Scholar 

  47. Gu Y, Yu S, Park JY, Harvatine K, Lambert JD (2014) Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice. J Nutr Biochem 25(4): 439–445

    Google Scholar 

  48. Matsui N, Ito R, Nishimura E, Yoshikawa M, Kato M, Kamei M, Hashizume S (2005) Ingested cocoa can prevent high-fat diet-induced obesity by regulating the expression of genes for fatty acid metabolism. Nutr 21(5):594–601

    Google Scholar 

  49. Yamashita Y, Okabe M, Natsume M, Ashida H (2012) Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Arch Biochem Bioph 527(2):1–10

    Google Scholar 

  50. Barros, HRM. (2016) Effects of camu camu and cupuassu phenolic compounds on obesity and type 2 diabetes mellitus development. Tesis. http://www.teses.usp.br/teses/disponiveis/9/9131/tde-19022016-151536/pt-br.php. Acessed 20 july 2017

  51. Oliveira TB, Rogero MM, Genovese MI (2015) Poliphenolic-rich extracts from cocoa (Theobroma cacao L.) and cupuassu (Theobroma grandiflorum Willd. Ex Spreng. K. Shum) liquors: A comparison of metabolic effects in high-fat fed rats. PharmaNutrition 3(2):20–28

    Google Scholar 

  52. Yun JW (2010) Possible anti-obesity therapeutics from nature–a review. Phytochemistry 71(14–15):1625–41

    Google Scholar 

  53. Garcia-Conesa MT (2015)  Dietary Polyphenols against Metabolic Disorders: How Far Have We Progressed in the Understanding of the Molecular Mechanisms of Action of These Compounds? Crit Rev Food Sci Nutr

    Google Scholar 

  54. Gu Y, Hurst WJ, Stuart D, Lambert JD (2011) Inhibition of key digestive enzymes by cocoa extracts and procyanidins. J Agric Food Chem 59(10):5305–5311

    Google Scholar 

  55. Min SY, Yang H, Seo SG, Shin SH, Chung M-Y, Kim J, Lee KW (2013) Cocoa polyphenols suppress adipogenesis in vitro and obesity in vivo by targeting insulin receptor. Internat J Obes 37(4):584–92

    Google Scholar 

  56. Ali F, Ismail A, Esa NM, Pei C (2016) Cocoa polyphenols treatment ameliorates visceral obesity by reduction lipogenesis and promoting fatty acid oxidation genes in obese rats through interfering with AMPK pathway. Eur J Lipid Sci Technol 118(4):564–575

    Google Scholar 

  57. Fidaleo M, Fracassi A, Zuorro A, Lavecchia R, Moreno S, Sartori C (2014) Cocoa protective effects against abnormal fat storage and oxidative stress induced by a high-fat diet involve PPAR alpha signalling activation. Food Funct 5(11):2931–2939

    Google Scholar 

  58. Ali F, Ismail A, Esa NM, Pei CP, Kersten S (2015) Hepatic genome-wide expression of lipid metabolism in diet-induced obesity rats treated with cocoa polyphenols. J Funct Foods 17:969–978

    Google Scholar 

  59. Gu Y, Yu S, Lambert JD (2014) Dietary cocoa ameliorates obesity-related inflammation in high fat-fed mice. Eur J Nutr 53(1):149–158

    Google Scholar 

  60. Cordero-Herrera I, Martin MA, Escriva F, Alvarez C et al (2015) Cocoa-rich diet ameliorates hepatic insulin resistance by modulating insulin signaling and glucose homeostasis in Zucker diabetic fatty rats. J. Nutr. Biochem 26:704–712

    Google Scholar 

  61. Cordero-Herrera I, Martin MA, Goya L, Ramos S (2015) Cocoa intake ameliorates hepatic oxidative stress in young Zucker diabetic fatty rats. Food Res Int 69:194–201

    Google Scholar 

  62. Grassi D, Desideri G, Necozione S, Lippi C, Casale R, Properzi G, Blumberg JB, Ferri C (2008) Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 138:1671–1676

    Google Scholar 

  63. Martin MA, Goya L, Ramos S (2016) Antidiabetic actions of cocoa flavanols. Mol Nutr Food Res 60(8):1756–1769

    Google Scholar 

  64. Tomaru M, Takano H, Osakabe N, Yasuda A, Inoue K-I, Yanagisawa R, et al (2007) Dietary supplementation with cacao liquor proanthocyanidins prevents elevation of blood glucose levels in diabetic obese mice. Nutr 23:351–5

    Google Scholar 

  65. Fernández-Millán E, Ramos S, Alvarez C, Bravo L, Goya L, Martín MÁ (2014) Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic beta cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways. Food Chem Toxicol 66:245–253

    Google Scholar 

  66. Fernandez-Millan E, Cordero-Herrera I, Ramos S, Escriva F, Alvarez C, Goya L Martin MA (2015) Cocoa-rich diet attenuates beta cell mass loss and function in young Zucker diabetic fatty rats by preventing oxidative stress and beta cell apoptosis. Molecular Nutrition & Food Research 59(4):820–824

    Google Scholar 

  67. Andújar I, Recio M C, Giner RM, Ríos JL (2012) Cocoa polyphenols and their potential benefits for human health. Oxidative Medicine and Cellular Longevity

    Google Scholar 

  68. Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, et al (2010) Impact of dietary polyphenols on carbohydratemetabolism. Int J Mol Sci 11:1365–402

    Google Scholar 

  69. Anhê FF, Desjardins Y, Pilon G, Dudonné S, Genovese M I, Lajolo FM, Marette A (2013) Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition 1(4):105–114

    Google Scholar 

  70. Barret A, Ndou T, Hughey CA, Straut C, Howel A, Dai Z, Kaletunc G (2013) Inhibition of α-amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries, and grapes. J Agric Food Chem 61(7):1477–86

    Google Scholar 

  71. Johnston K, Sharp P, Clifford M, Morgan L (2005) Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett 579(7):1653–7

    Google Scholar 

  72. Katz DL, Doughty K, Ali A (2011) Cocoa and Chocolate in Human Health and Disease. Antioxid Redox Signal 15(10):2779–2811

    Google Scholar 

  73. Gonçalves AESS, Lajolo FM, Genovese MI (2010) Chemical composition and antioxidant/antidiabetic potential of brazilian native fruits and commercial frozen pulps. J Agric Food Chem 58(8):4666–4674

    Google Scholar 

  74. Kim Y, Keogh JB, Clifton PM (2016) Polyphenols and Glycemic Control. Nutrients 8(1):17

    Google Scholar 

  75. Strat KM, Rowley TJ, Smithson AT, Tessem JS, Hulver MW, Liu D, Davy BM, Davy KP, Neilson AP (2016) Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. J Nutr Biochem 35:1–21

    Google Scholar 

  76. Jalil A-M-M, Ismail A, Pei C-P, Hamid M, Kamaruddin S-H-S (2008) Effects of cocoa extract on glucometabolism, oxidative stress, and antioxidant enzymes in obese- diabetic (Ob-db) rats. J Agric Food Chem 56:7877–84

    Google Scholar 

  77. Yamashita Y, Okabe M, Natsume M, Ashida H (2012a) Cacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle. J Nutr Sci, 1, e 2

    Google Scholar 

  78. Oliveira TB, Genovese MI (2013) Chemical composition of cupuassu (Theobroma grandiflorum) and cocoa (Theobroma cacao) liquors and their effects on streptozotocin-induced diabetic rats. Food Res Internatl 51(2):929–935

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Inés Genovese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Genovese, M.I., Barros, H.R.d.M. (2017). Theobroma cacao and Theobroma grandiflorum: Bioactive Compounds and Associated Health Benefits. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics