Advertisement

Methanogenesis at High Latitudes

  • Xiuzhu Dong
  • Jianqing Tian
  • Lei Qi
  • Lingyan Li
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Methane (CH4) is the second greenhouse gas after carbon dioxide (CO2), and a quite portion of CH4 is released from permafrost and cold wetlands at high latitudes and altitudes. Global warming is causing permafrost thawing that results in release of the permafrost stored ancient carbon by microbial degradation at elevated temperatures. Methanogenesis is exclusively implemented by methanogenic Archaea although thus far only a few of the psychrophilic or psychrotolerant methanogen species have been cultured. In this chapter, we present methanogenesis pathways prevalent in the cold regions at both the earth poles and the high altitude Tibetan Plateau, as well as information on cold adapted methanogens that are responsible for the methane production. At the last, we show the distinct cold adaptive mechanisms found in methanogenic Archaea.

Notes

Acknowledgments

We thank the NSFC grants (31430001, 31670049) in supporting our study on the methanogenesis in Tibetan Plateau, from these projects we leant the knowledge and enable us to accomplish this chapter.

References

  1. Armstrong W, Justin SHFW, Beckett PM, Lythe S (1991) Root adaptation to soil waterlogging. Aquat Bot 39:57–73CrossRefGoogle Scholar
  2. Avis CA, Weaver AJ, Meissner KJ (2011) Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nat Geosci 4:444–448CrossRefGoogle Scholar
  3. Bae W, Xia B, Inouye M, Severinov K (2010) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA 97:7784–7789CrossRefGoogle Scholar
  4. Bhullar GS, Edwards PJ, Venterink HO (2013) Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J Plant Ecol 6:298–304CrossRefGoogle Scholar
  5. Bousquet P, Ringeval B, Pison I et al (2011) Source attribution of the changes in atmospheric methane for 2006–2008. Atmos Chem Phys 11:3689–3700CrossRefGoogle Scholar
  6. Cao Y, Li J, Jiang N, Dong XZ (2014) Mechanism for stabilizing mRNAs involved in methanol-dependent methanogenesis of cold-adaptive Methanosarcina mazei ZM-15. Appl Environ Microbiol 80:1291–1298CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:331–343CrossRefPubMedGoogle Scholar
  8. Chen ZJ, Yu HY, Li LY, Hu SN, Dong XZ (2012) The genome and transcriptome of a newly described psychrophilic archaeon, Methanolobus psychrophilus R15, reveal its cold adaptive characteristics. Environ Microbiol Rep 4:633–641PubMedGoogle Scholar
  9. Chong SC, Liu YT, Cummins M, Valentine DL, Boone DR (2002) Methanogenium marinum sp nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Anton Leeuw Int J G 81:263–270CrossRefGoogle Scholar
  10. Christensen TR, Prentice IC, Kaplan J, Haxeltine A, Sitch S (1996) Methane flux from northern wetlands and tundra – an ecosystem source modelling approach. Tellus B 48:652–661CrossRefGoogle Scholar
  11. Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202CrossRefGoogle Scholar
  12. Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem 36:739–752CrossRefGoogle Scholar
  13. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292CrossRefPubMedGoogle Scholar
  14. Corradi C, Kolle O, Walter K, Zimov SA, Schulze ED (2005) Carbon dioxide and methane exchange of a north-east Siberian tussock tundra. Glob Chang Biol 11:1910–1925Google Scholar
  15. Deppenmeier U (2002) Redox-driven proton translocation in methanogenic archaea. Cell Mol Life Sci 59:1513–1533CrossRefPubMedGoogle Scholar
  16. Ding WX, Cai ZC, Wang DX (2004) Preliminary budget of methane emissions from natural wetlands in China. Atmos Environ 38:751–759CrossRefGoogle Scholar
  17. Evans PN, Parks DH, Chadwick GL et al (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438CrossRefPubMedGoogle Scholar
  18. Evguenieva-Hackenberg E, Walter P, Hochleitner E, Lottspeich F, Klug G (2003) An exosome-like complex in Sulfolobus solfataricus. EMBO Rep 4:889–893CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands. Nat Geosci 4:895–900CrossRefGoogle Scholar
  20. Franzmann PD, Springer N, Ludwig W, Demacario EC, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica – Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581CrossRefGoogle Scholar
  21. Franzmann PD, Liu YT, Balkwill DL et al (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Evol Microbiol 47:1068–1072Google Scholar
  22. Fung I, John J, Lerner J et al (1991) Three-dimensional model synthesis of the global methane cycle. J Geophys Res: Atmos 96:13033–13065CrossRefGoogle Scholar
  23. Galand PE, Fritze H, Conrad R, Yrjala K (2005) Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl Environ Microbiol 71:2195–2198CrossRefPubMedPubMedCentralGoogle Scholar
  24. Galand PE, Yrjala K, Conrad R (2010) Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems. Biogeosciences 7:3893–3900CrossRefGoogle Scholar
  25. Gao X, Schlosser CA, Sokolov A, Anthony KW, Zhuang QL, Kicklighter D (2013) Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback. Environ Res Lett 8:035014CrossRefGoogle Scholar
  26. Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226CrossRefPubMedGoogle Scholar
  27. Giaquinto L, Curmi PM, Siddiqui KS et al (2007) Structure and function of cold shock proteins in archaea. J Bacteriol 189:5738–5748CrossRefPubMedPubMedCentralGoogle Scholar
  28. Godin A, McLaughlin JW, Webster KL et al (2012) Methane and methanogen community dynamics across a boreal peatland nutrient gradient. Soil Biol Biochem 48:96–105CrossRefGoogle Scholar
  29. Inouye M, Phadtare S (2007) The cold-shock response. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 180–193CrossRefGoogle Scholar
  30. Jager D, Sharma CM, Thomsen J et al (2009) Deep sequencing analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen availability. Pro Natl Acad Sci USA 106:21878–21882CrossRefGoogle Scholar
  31. Jassey VEJ, Chiapusio G, Binet P et al (2013) Above and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Glob Chang Biol 19:811–823CrossRefPubMedGoogle Scholar
  32. Jeffries MO, Richter-Menge J, Overland JE (2015) Arctic report card 2015. http://www.arctic.noaa.gov/Report-Card
  33. Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202CrossRefPubMedGoogle Scholar
  34. Jiang N, Wang Y, Dong X (2010) Methanol as the primary methanogenic and acetogenic precursor in the cold Zoige wetland at Tibetan Plateau. Microb Ecol 60:206–213CrossRefPubMedGoogle Scholar
  35. Jin HJ, Wu J, Cheng GD et al (1999) Methane emissions from wetlands on the Qinghai-Tibet Plateau. Chin Sci Bull 44:2282–2286CrossRefGoogle Scholar
  36. Jones PG, Inouye M (1996) RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol 21:1207–1218CrossRefPubMedGoogle Scholar
  37. Jungkunst HF (2010) Soil science Arctic thaw. Nat Geosci 3:306–307CrossRefGoogle Scholar
  38. Juottonen H, Galand PE, Tuittila ES et al (2005) Methanogen communities and bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7:1547–1557CrossRefPubMedGoogle Scholar
  39. Juottonen H, Tuittila ES, Juutinen S et al (2008) Seasonality of rDNA- and rRNA-derived archaeal communities and methanogenic potential in a boreal mire. ISME J 2:1157–1168CrossRefPubMedGoogle Scholar
  40. Karr EA, Ng JM, Belchik SM et al (2006) Biodiversity of methanogenic and other Archaea in the permanently frozen Lake Fryxell, Antarctica. Appl Environ Microbiol 72:1663–1666CrossRefPubMedPubMedCentralGoogle Scholar
  41. Keller JK, Bridgham SD (2007) Pathways of anaerobic carbon cycling across an ombrotrophic – minerotrophic peatland gradient. Limnol Oceanogr 52:96–107CrossRefGoogle Scholar
  42. Kendall MM, Wardlaw GD, Tang CF et al (2007) Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl Environ Microbiol 73:407–414CrossRefPubMedGoogle Scholar
  43. Kobabe S, Wagner D, Pfeiffer EM (2004) Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiol Ecol 50:13–23CrossRefPubMedGoogle Scholar
  44. Kotiaho M, Fritze H, Merilä P et al (2010) Methanogen activity in relation to water table level in two boreal fens. Biol Fertil Soils 46:567–575CrossRefGoogle Scholar
  45. Kotsyurbenko OR, Chin K-J, Glagolev MV et al (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ Microbiol 6:1159–1173CrossRefPubMedGoogle Scholar
  46. Kotsyurbenko OR, Friedrich MW, Simankova MV et al (2007) Shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol 73:2344–2348CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li J, Qi L, Guo Y et al (2015) Global mapping transcriptional start sites revealed both transcriptional and post-transcriptional regulation of cold adaptation in the methanogenic archaeon Methanolobus psychrophilus. Sci Rep 5:9209.  https://doi.org/10.1038/srep09209CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liu DY, Ding WX, Jia ZJ, Cai ZC (2011) Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China. Biogeosciences 8:329–338CrossRefGoogle Scholar
  49. Liu Y, Yao T, Gleixner G et al (2013) Methanogenic pathways, 13C isotope fractionation, and archaeal community composition in lake sediments and wetland soils on the Tibetan Plateau. J Geophys Res Biogeosci 118:650–664CrossRefGoogle Scholar
  50. Liu Y, Priscu JC, Xiong J et al (2016) Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau. FEMS Microbiol Ecol 92:fiw033CrossRefPubMedGoogle Scholar
  51. Marti M, Juottonen H, Robroek BJM et al (2015) Nitrogen and methanogen community composition within and among three Sphagnum dominated peatlands in Scandinavia. Soil Biol Biochem 81:204–211CrossRefGoogle Scholar
  52. McEwing KR, Fisher JP, Zona D (2015) Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic. Plant Soil 388:37–52CrossRefPubMedPubMedCentralGoogle Scholar
  53. Meng J, Xu J, Qin D et al (2014) Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8:650–659CrossRefPubMedGoogle Scholar
  54. Metje M, Frenzel P (2005) Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland. Appl Environ Microbiol 71:8191–8200CrossRefPubMedPubMedCentralGoogle Scholar
  55. Metje M, Frenzel P (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol 9:954–964CrossRefPubMedGoogle Scholar
  56. Mondav R, Woodcroft BJ, Kim EH et al (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 5:3212CrossRefPubMedGoogle Scholar
  57. Nichols DS, Miller MR, Davies NW et al (2004) Cold adaptation in the antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J Bacteriol 186:8508–8515CrossRefPubMedPubMedCentralGoogle Scholar
  58. Noon KR, Guymon R, Crain PF et al (2003) Influence of temperature on tRNA modification in Archaea: Methanococcoides burtonii (optimum growth temperature [T-opt], 23°C) and Stetteria hydrogenophila (T-opt, 95°C). J Bacteriol 185:5483–5490CrossRefPubMedPubMedCentralGoogle Scholar
  59. Phadtare S, Yamanaka K, Inouye M (2000) The cold shock reponse. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, DC, pp 33–45Google Scholar
  60. Piette F, Struvay C, Feller G (2011) The protein folding challenge in psychrophiles: facts and current issues. Environ Microbiol 13:1924–1933CrossRefPubMedGoogle Scholar
  61. Prud’homme-Genereux A, Beran RK, Iost I et al (2004) Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a ‘cold shock degradosome’. Mol Microbiol 54:1409–1421CrossRefPubMedGoogle Scholar
  62. Rivkina E, Shcherbakova V, Laurinavichius K et al (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61:1–15CrossRefPubMedGoogle Scholar
  63. Rooney-Varga JN, Giewat MW, Duddleston KN et al (2007) Links between archaeal community structure, vegetation type and methanogenic pathway in Alaskan peatlands. FEMS Microbiol Ecol 60:240–251CrossRefPubMedGoogle Scholar
  64. Russell NJ (1984) Mechanisms of thermal adaptation in bacteria – blueprints for survival. Trends Biochem Sci 9:108–112CrossRefGoogle Scholar
  65. Saunders NFW, Thomas T, Curmi PMG et al (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588CrossRefPubMedPubMedCentralGoogle Scholar
  66. Schuur EA, Abbott B (2011) Climate change: high risk of permafrost thaw. Nature 480:32–33CrossRefPubMedGoogle Scholar
  67. Sharma CM, Vogel J (2014) Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 19:97–105CrossRefPubMedGoogle Scholar
  68. Simankova MV, Parshina SN, Tourova TP et al (2001) Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. Syst Appl Microbiol 24:362–367CrossRefPubMedGoogle Scholar
  69. Singh N, Kendall MM, Liu YT, Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55:2531–2538CrossRefPubMedGoogle Scholar
  70. Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308:1429–1429CrossRefPubMedGoogle Scholar
  71. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.). IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 ppGoogle Scholar
  72. Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9:1185–1192CrossRefGoogle Scholar
  73. Taha, Siddiqui KS, Campanaro S, Najnin T et al (2016) Single TRAM domain RNA-binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii. Environ Microbiol 18:2810–2824CrossRefPubMedGoogle Scholar
  74. Tian JQ, Wang YF, Dong XZ (2010) Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil. Int J Syst Evol Microbiol 60:2165–2169CrossRefPubMedGoogle Scholar
  75. Tian JQ, Chen H, Dong XZ, Wang YF (2012) Relationship between archaeal community structure and vegetation type in a fen on the Qinghai-Tibetan Plateau. Biol Fertil Soils 48:349–356CrossRefGoogle Scholar
  76. Trenberth KE, Jones PD, Ambenje P et al (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 235–336Google Scholar
  77. Tveit AT, Urich T, Frenzel P, Svenning MM (2015) Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci U S A 112:E2507–E2516CrossRefPubMedPubMedCentralGoogle Scholar
  78. van Huissteden J, Maximov TC, Dolman AJ (2005) High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). J Geophys Res Biogeosci 110:G02002Google Scholar
  79. Vanwonterghem I, Evans PN, Parks DH et al (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1:16170.  https://doi.org/10.1038/nmicrobiol.2016.170CrossRefPubMedGoogle Scholar
  80. von Fischer JC, Hedin LO (2007) Controls on soil methane fluxes: tests of biophysical mechanisms using stable isotope tracers. Global Biogeochem Cycles 21:GB2007Google Scholar
  81. von Klein D, Arab H, Volker H, Thomm M (2002) Methanosarcina baltica, sp nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6:103–110CrossRefGoogle Scholar
  82. Wagner D, Liebner S (2010) Methanogenesis in arctic permafrost habitats. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 655–663CrossRefGoogle Scholar
  83. Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol 7:1582–1592CrossRefPubMedGoogle Scholar
  84. Williams TJ, Burg DW, Raftery MJ et al (2010) Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part I: the effect of growth temperature. J Proteome Res 9:640–652CrossRefPubMedGoogle Scholar
  85. Williams TJ, Lauro FM, Ertan H et al (2011) Defining the response of a microorganism to temperatures that span its complete growth temperature range (−2°C to 28°C) using multiplex quantitative proteomics. Environ Microbiol 13:2186–2203CrossRefPubMedGoogle Scholar
  86. Yavitt JB, Seidmann-Zager M (2006) Methanogenic conditions in northern peat soils. Geomicrobiol J 23:119–127CrossRefGoogle Scholar
  87. Yavitt JB, Yashiro E, Cadillo-Quiroz H, Zinder SH (2012) Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America. Biogeochemistry 109:117–131CrossRefGoogle Scholar
  88. Yuan J, Ding W, Liu D et al (2016) Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion. Sci Rep 6:18777CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang T, Barry RG, Knowles K, Ling F, Armstrong RL (2003) Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. In: Phillips SA (ed) Permafrost. Swets and Zeitlinger, Lisse, pp 1289–1294Google Scholar
  90. Zhang GS, Jiang N, Liu XL, Dong XZ (2008a) Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp nov., prevalent in Zoige wetland of the Tibetan plateau. Appl Environ Microbiol 74:6114–6120CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhang GS, Tian JQ, Jiang N et al (2008b) Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environ Microbiol 10:1850–1860CrossRefPubMedGoogle Scholar
  92. Zhou L, Liu X, Dong X (2014) Methanospirillum psychrodurum sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 64:638–641CrossRefPubMedGoogle Scholar
  93. Zhang B, Yue L, Zhou L, Qi L, Li J, Dong X (2017) Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity. Frontiers in Microbiology 8Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xiuzhu Dong
    • 1
  • Jianqing Tian
    • 2
  • Lei Qi
    • 1
  • Lingyan Li
    • 1
  1. 1.State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations