Advertisement

Radiosurgery of Brain Arteriovenous and Cavernous Malformations

  • Hugo Andrade Bazarde
  • Frederik Wenz
  • Daniel Hänggi
  • Nima EtminanEmail author
Living reference work entry

Abstract

Brain arteriovenous malformations (bAVMs) consist of an abnormal tangle of vessels that shunts blood directly from an artery to a vein, without intervention of a capillary bed. The absence of a capillary bed results into an abnormal high pressure flow from the feeding artery or arteries into draining vein(s) and thus higher pressure on the venous side. bAVMs are rare vascular entities, with an incidence of approximately 1.3 per 100,000 person-years and a prevalence of 10–18 per 100,000 person-years. bAVMs are the most frequent cause of nontraumatic intracerebral hemorrhage (ICH) in people younger than 35 years. Other clinical manifestations are seizures, headaches and progressive neurological symptoms (8%) related to ischemia of the surrounding 122w2ssssewdsafgewrhytehtbrain tissue. The main treatment goal of bAVMs is the complete elimination or obliteration of the nidus and of the arteriovenous shunts. The first method is microsurgical resection, which can be performed primarily or following bAVM embolization to reduce the risk of bleeding during surgery and make the resection less challenging. The second method is endovascular embolization, which can be used as a complementary method to the previous techniques, however, in some specific circumstances could serve as definitive treatment and achieve complete obliteration of the bAVM. The third option is stereotactic radiosurgery (SRS), which can in line with microsurgery be applied primarily or after embolization. This chapter discuss the current data on classifications and management of bAVM or cavernous malformation patients.

Keywords

Brain AVMs Cavernous malformations Risk of rupture Microsurgery Stereotactic Radiosurgery 

References

  1. Abecassis IJ, Xu DS, Batjer HH, Bendok BR. Natural history of brain arteriovenous malformations: a systematic review. Neurosurg Focus. 2014;37:E7.CrossRefGoogle Scholar
  2. Abecassis IJ, Nerva JD, Feroze A, Barber J, Ghodke BV, Kim LJ, et al. Multimodality management of Spetzler-Martin Grade 3 brain arteriovenous malformations with subgroup analysis. World Neurosurg. 2017;102: 263–74.CrossRefGoogle Scholar
  3. Abla AA, Lekovic GP, Turner JD, de Oliveira JG, Porter R, Spetzler RF. Advances in the treatment and outcome of brainstem cavernous malformation surgery: a single-center case series of 300 surgically treated patients. Neurosurgery. 2011;68:403–14;discussion 414–405.CrossRefGoogle Scholar
  4. Almefty KK, Spetzler RF. Management of brainstem cavernous malformations. World Neurosurg. 2015;83: 317–9.CrossRefGoogle Scholar
  5. Al-Shahi Salman R, White PM, Counsell CE, du Plessis J, van Beijnum J, Josephson CB, et al. Outcome after conservative management or intervention for unruptured brain arteriovenous malformations. JAMA. 2014;311:1661–9.CrossRefGoogle Scholar
  6. Al-Shahi R, Fang JS, Lewis SC, Warlow CP. Prevalence of adults with brain arteriovenous malformations: a community based study in Scotland using capture-recapture analysis. J Neurol Neurosurg Psychiatry. 2002;73: 547–51.CrossRefGoogle Scholar
  7. Amin-Hanjani S, Ogilvy CS, Ojemann RG, Crowell RM. Risks of surgical management for cavernous malformations of the nervous system. Neurosurgery. 1998;42:1220–7;discussion 1227–1228.CrossRefGoogle Scholar
  8. Awad I, Jabbour P. Cerebral cavernous malformations and epilepsy. Neurosurg Focus. 2006;21:e7.PubMedGoogle Scholar
  9. Backes D, Rinkel GJ, Kemperman H, Linn FH, Vergouwen MD. Time-dependent test characteristics of head computed tomography in patients suspected of nontraumatic subarachnoid hemorrhage. Stroke. 2012;43:2115–9.CrossRefGoogle Scholar
  10. Baranoski JF, Kalani MYS, Przybylowski CJ, Zabramski JM. Corrigendum: cerebral cavernous malformations: review of the genetic and protein-protein interactions resulting in disease pathogenesis. Front Surg. 2017;4:31.CrossRefGoogle Scholar
  11. Baumann CR, Acciarri N, Bertalanffy H, Devinsky O, Elger CE, Lo Russo G, et al. Seizure outcome after resection of supratentorial cavernous malformations: a study of 168 patients. Epilepsia. 2007;48:559–63.CrossRefGoogle Scholar
  12. Bervini D, Morgan MK, Ritson EA, Heller G. Surgery for unruptured arteriovenous malformations of the brain is better than conservative management for selected cases: a prospective cohort study. J Neurosurg. 2014;121:878–90.CrossRefGoogle Scholar
  13. Braksick SA, Fugate JE. Management of brain arteriovenous malformations. Curr Treat Options Neurol. 2015;17:358.CrossRefGoogle Scholar
  14. Chang SD, Marcellus ML, Marks MP, Levy RP, Do HM, Steinberg GK. Multimodality treatment of giant intracranial arteriovenous malformations. Neurosurgery. 2003;53:1–11;discussion 11–13.CrossRefGoogle Scholar
  15. Chen CJ, Norat P, Ding D, Mendes GAC, Tvrdik P, Park MS, et al. Transvenous embolization of brain arteriovenous malformations: a review of techniques, indications, and outcomes. Neurosurg Focus. 2018;45:E13.CrossRefGoogle Scholar
  16. Cordonnier C, Klijn CJ, van Beijnum J, Al-Shahi SR. Radiological investigation of spontaneous intracerebral hemorrhage: systematic review and trinational survey. Stroke. 2010;41:685–90.CrossRefGoogle Scholar
  17. da Costa L, Wallace MC, Ter Brugge KG, O’Kelly C, Willinsky RA, Tymianski M. The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke. 2009;40:100–5.CrossRefGoogle Scholar
  18. Dalyai RT, Ghobrial G, Awad I, Tjoumakaris S, Gonzalez LF, Dumont AS, et al. Management of incidental cavernous malformations: a review. Neurosurg Focus. 2011;31:E5.CrossRefGoogle Scholar
  19. Deibert CP, Ahluwalia MS, Sheehan JP, Link MJ, Hasegawa T, Yomo S, et al. Bevacizumab for refractory adverse radiation effects after stereotactic radiosurgery. J Neuro-Oncol. 2013;115:217–23.CrossRefGoogle Scholar
  20. Del Curling O Jr, Kelly DL Jr, Elster AD, Craven TE. An analysis of the natural history of cavernous angiomas. J Neurosurg. 1991;75:702–8.CrossRefGoogle Scholar
  21. Delev D, Pavlova A, Grote A, Bostrom A, Hollig A, Schramm J, et al. Notch4 gene polymorphisms as potential risk factors for brain arteriovenous malformation development and hemorrhagic presentation. J Neurosurg. 2017;126:1552–9.CrossRefGoogle Scholar
  22. Derdeyn CP, Zipfel GJ, Albuquerque FC, Cooke DL, Feldmann E, Sheehan JP, et al. Management of brain arteriovenous malformations: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2017;48:e200–24.PubMedGoogle Scholar
  23. Englot DJ, Han SJ, Lawton MT, Chang EF. Predictors of seizure freedom in the surgical treatment of supratentorial cavernous malformations. J Neurosurg. 2011;115:1169–74.CrossRefGoogle Scholar
  24. Fierstra J, Conklin J, Krings T, Slessarev M, Han JS, Fisher JA, et al. Impaired peri-nidal cerebrovascular reserve in seizure patients with brain arteriovenous malformations. Brain. 2011;134:100–9.CrossRefGoogle Scholar
  25. Galletti F, Costa C, Cupini LM, Eusebi P, Hamam M, Caputo N, et al. Brain arteriovenous malformations and seizures: an Italian study. J Neurol Neurosurg Psychiatry. 2014;85:284–8.CrossRefGoogle Scholar
  26. Hernesniemi JA, Dashti R, Juvela S, Vaart K, Niemela M, Laakso A. Natural history of brain arteriovenous malformations: a long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery. 2008;63: 823–9;discussion 829–831.CrossRefGoogle Scholar
  27. Hofmeister C, Stapf C, Hartmann A, Sciacca RR, Mansmann U, terBrugge K, et al. Demographic, morphological, and clinical characteristics of 1289 patients with brain arteriovenous malformation. Stroke. 2000;31:1307–10.CrossRefGoogle Scholar
  28. Horne MA, Flemming KD, Su IC, Stapf C, Jeon JP, Li D, et al. Clinical course of untreated cerebral cavernous malformations: a meta-analysis of individual patient data. Lancet Neurol. 2016;15:166–73.CrossRefGoogle Scholar
  29. Joint Writing Group of the Technology Assessment Committee American Society of Interventional and Therapeutic Neuroradiology, Joint Section on Cerebrovascular Neurosurgery a Section of the American Association of Neurological Surgeons and Congress of Neurological Surgeons, Section of Stroke and the Section of Interventional Neurology of the American Academy of Neurology, et al. Reporting terminology for brain arteriovenous malformation clinical and radiographic features for use in clinical trials. Stroke. 2001;32:1430–42.CrossRefGoogle Scholar
  30. Josephson CB, Leach JP, Duncan R, Roberts RC, Counsell CE, Al-Shahi Salman R, et al. Seizure risk from cavernous or arteriovenous malformations: prospective population-based study. Neurology. 2011;76: 1548–54.CrossRefGoogle Scholar
  31. Josephson CB, White PM, Krishan A, Al-Shahi SR. Computed tomography angiography or magnetic resonance angiography for detection of intracranial vascular malformations in patients with intracerebral haemorrhage. Cochrane Database Syst Rev. 2014;(9):CD009372.Google Scholar
  32. Kim H, Al-Shahi Salman R, McCulloch CE, Stapf C, Young WL, MARS Coinvestigators. Untreated brain arteriovenous malformation: patient-level meta-analysis of hemorrhage predictors. Neurology. 2014a;83: 590–7.CrossRefGoogle Scholar
  33. Kim MH, Park KM, Hwang JK, Park SC, Moon IS, Kim JI. The natural history of arteriovenous access and risk factors associated with access thrombosis after successful kidney transplantation. Transplant Proc. 2014b;46:602–6.CrossRefGoogle Scholar
  34. Kim H, Nelson J, Krings T, terBrugge KG, McCulloch CE, Lawton MT, et al. Hemorrhage rates from brain arteriovenous malformation in patients with hereditary hemorrhagic telangiectasia. Stroke. 2015;46:1362–4.CrossRefGoogle Scholar
  35. Koltz MT, Polifka AJ, Saltos A, Slawson RG, Kwok Y, Aldrich EF, et al. Long-term outcome of Gamma Knife stereotactic radiosurgery for arteriovenous malformations graded by the Spetzler-Martin classification. J Neurosurg. 2013;118:74–83.CrossRefGoogle Scholar
  36. Kondo R, Matsumoto Y, Endo H, Miyachi S, Ezura M, Sakai N. Endovascular embolization of cerebral arteriovenous malformations: results of the Japanese Registry of Neuroendovascular Therapy (JR-NET) 1 and 2. Neurol Med Chir (Tokyo). 2014;54(Suppl 2):54–62.CrossRefGoogle Scholar
  37. Korja M, Bervini D, Assaad N, Morgan MK. Role of surgery in the management of brain arteriovenous malformations: prospective cohort study. Stroke. 2014;45:3549–55.CrossRefGoogle Scholar
  38. Labauge P, Denier C, Bergametti F, Tournier-Lasserve E. Genetics of cavernous angiomas. Lancet Neurol. 2007;6:237–44.CrossRefGoogle Scholar
  39. Lai LF, Chen M, Chen JX, Zheng K, He XY, Li XF, et al. Multidisciplinary care of unruptured brain arteriovenous malformations to improve symptomatic headache and the onset, progression, and outcomes of unruptured brain arteriovenous malformations. Pain Physician. 2017;20:E127–36.PubMedGoogle Scholar
  40. Lawton MT, UCSF Brain Arteriovenous Malformation Study Project. Spetzler-Martin Grade III arteriovenous malformations: surgical results and a modification of the grading scale. Neurosurgery. 2003;52:740–8;discussion 748–749.CrossRefGoogle Scholar
  41. Lawton MT, Kim H, McCulloch CE, Mikhak B, Young WL. A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery. 2010;66: 702–13;discussion 713.CrossRefGoogle Scholar
  42. Lu XY, Sun H, Xu JG, Li QY. Stereotactic radiosurgery of brainstem cavernous malformations: a systematic review and meta-analysis. J Neurosurg. 2014;120: 982–7.CrossRefGoogle Scholar
  43. Lunsford LD, Kondziolka D, Flickinger JC, Bissonette DJ, Jungreis CA, Maitz AH, et al. Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg. 1991;75:512–24.CrossRefGoogle Scholar
  44. Lunsford LD, Khan AA, Niranjan A, Kano H, Flickinger JC, Kondziolka D. Stereotactic radiosurgery for symptomatic solitary cerebral cavernous malformations considered high risk for resection. J Neurosurg. 2010;113:23–9.CrossRefGoogle Scholar
  45. Macmurdo CF, Wooderchak-Donahue W, Bayrak-Toydemir P, Le J, Wallenstein MB, Milla C, et al. Rasa1 somatic mutation and variable expressivity in capillary malformation/arteriovenous malformation (CM/AVM) syndrome. Am J Med Genet A. 2016;170:1450–4.CrossRefGoogle Scholar
  46. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet. 2014;383: 614–21.CrossRefGoogle Scholar
  47. Morgan MK, Rochford AM, Tsahtsarlis A, Little N, Faulder KC. Surgical risks associated with the management of Grade I and II brain arteriovenous malformations. Neurosurgery. 2004;54:832–7;discussion 837–839.CrossRefGoogle Scholar
  48. Morris Z, Whiteley WN, Longstreth WT Jr, Weber F, Lee YC, Tsushima Y, et al. Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2009;339:b3016.CrossRefGoogle Scholar
  49. Moultrie F, Horne MA, Josephson CB, Hall JM, Counsell CE, Bhattacharya JJ, et al. Outcome after surgical or conservative management of cerebral cavernous malformations. Neurology. 2014;83:582–9.CrossRefGoogle Scholar
  50. Nakamura M, Samii A, Lang JM, Gotz F, Samii M, Krauss JK. De novo arteriovenous malformation growth secondary to implantation of genetically modified allogeneic mesenchymal stem cells in the brain. Neurosurgery. 2016;78:E596–600.CrossRefGoogle Scholar
  51. Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, Rezai Jahromi B, et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med. 2018;378:250–61.CrossRefGoogle Scholar
  52. Ogilvy CS, Stieg PE, Awad I, Brown RD Jr, Kondziolka D, Rosenwasser R, et al. Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Circulation. 2001;103:2644–57.CrossRefGoogle Scholar
  53. Ojemann RG, Ogilvy CS. Microsurgical treatment of supratentorial cavernous malformations. Neurosurg Clin N Am. 1999;10:433–40.CrossRefGoogle Scholar
  54. Ondra SL, Troupp H, George ED, Schwab K. The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg. 1990;73:387–91.CrossRefGoogle Scholar
  55. Pham M, Gross BA, Bendok BR, Awad IA, Batjer HH. Radiosurgery for angiographically occult vascular malformations. Neurosurg Focus. 2009;26:E16.CrossRefGoogle Scholar
  56. Pollock BE, Flickinger JC. A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg. 2002;96:79–85.CrossRefGoogle Scholar
  57. Pollock BE, Garces YI, Stafford SL, Foote RL, Schomberg PJ, Link MJ. Stereotactic radiosurgery for cavernous malformations. J Neurosurg. 2000;93: 987–91.CrossRefGoogle Scholar
  58. Pollock BE, Link MJ, Stafford SL, Lanzino G, Garces YI, Foote RL. Volume-staged stereotactic radiosurgery for intracranial arteriovenous malformations: outcomes based on an 18-year experience. Neurosurgery. 2017a;80:543–50.CrossRefGoogle Scholar
  59. Pollock BE, Link MJ, Branda ME, Storlie CB. Incidence and management of late adverse radiation effects after arteriovenous malformation radiosurgery. Neurosurgery. 2017b;81:928.CrossRefGoogle Scholar
  60. Potts MB, Zumofen DW, Raz E, Nelson PK, Riina HA. Curing arteriovenous malformations using embolization. Neurosurg Focus. 2014;37:E19.CrossRefGoogle Scholar
  61. Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti K, Knight JT, et al. Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med. 1988;319:343–7.CrossRefGoogle Scholar
  62. Ruiz-Sandoval JL, Cantu C, Barinagarrementeria F. Intracerebral hemorrhage in young people: analysis of risk factors, location, causes, and prognosis. Stroke. 1999;30:537–41.CrossRefGoogle Scholar
  63. Saeed Kilani M, Lepennec V, Petit P, Magalon G, Casanova D, Bartoli JM, et al. Embolization of peripheral high-flow arteriovenous malformations with onyx. Diagn Interv Imaging. 2017;98:217–26.CrossRefGoogle Scholar
  64. Schneider BF, Eberhard DA, Steiner LE. Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 1997;87:352–7.CrossRefGoogle Scholar
  65. Seymour ZA, Sneed PK, Gupta N, Lawton MT, Molinaro AM, Young W, et al. Volume-staged radiosurgery for large arteriovenous malformations: an evolving paradigm. J Neurosurg. 2016;124:163–74.CrossRefGoogle Scholar
  66. Shin SS, Murdoch G, Hamilton RL, Faraji AH, Kano H, Zwagerman NT, et al. Pathological response of cavernous malformations following radiosurgery. J Neurosurg. 2015;123:938–44.CrossRefGoogle Scholar
  67. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65: 476–83.CrossRefGoogle Scholar
  68. Spetzler RF, Ponce FA. A 3-tier classification of cerebral arteriovenous malformations. Clinical article. J Neurosurg. 2011;114:842–9.CrossRefGoogle Scholar
  69. Stapf C, Mast H, Sciacca RR, Berenstein A, Nelson PK, Gobin YP, et al. The New York Islands AVM study: design, study progress, and initial results. Stroke. 2003;34:e29–33.PubMedGoogle Scholar
  70. Tranvinh E, Heit JJ, Hacein-Bey L, Provenzale J, Wintermark M. Contemporary imaging of cerebral arteriovenous malformations. AJR Am J Roentgenol. 2017;208:1320–30.CrossRefGoogle Scholar
  71. Voigt K, Yasargil MG. Cerebral cavernous haemangiomas or cavernomas. Incidence, pathology, localization, diagnosis, clinical features and treatment. Review of the literature and report of an unusual case. Neurochirurgia (Stuttg). 1976;19:59–68.Google Scholar
  72. Wang JY, Yang W, Ye X, Rigamonti D, Coon AL, Tamargo RJ, et al. Impact on seizure control of surgical resection or radiosurgery for cerebral arteriovenous malformations. Neurosurgery. 2013;73:648–55;discussion 655–646.CrossRefGoogle Scholar
  73. Wang KY, Idowu OR, Lin DDM. Radiology and imaging for cavernous malformations. Handb Clin Neurol. 2017;143:249–66.CrossRefGoogle Scholar
  74. Willems PW, Taeshineetanakul P, Schenk B, Brouwer PA, Terbrugge KG, Krings T. The use of 4d-CTA in the diagnostic work-up of brain arteriovenous malformations. Neuroradiology. 2012;54:123–31.CrossRefGoogle Scholar
  75. Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, et al. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg. 1994;80:422–32.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hugo Andrade Bazarde
    • 1
  • Frederik Wenz
    • 2
  • Daniel Hänggi
    • 1
  • Nima Etminan
    • 1
    Email author
  1. 1.Department of NeurosurgeryUniversity Hospital Mannheim Medical Faculty Mannheim, University of HeidelbergMannheimGermany
  2. 2.Department of Radiation OncologyUniversity Hospital Mannheim Medical Faculty Mannheim, University of HeidelbergMannheimGermany

Personalised recommendations