Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

Living Edition
| Editors: Samuel L. Manzello


  • James L. Urban
  • A. Carlos Fernandez-Pello
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-51727-8_61-1



Ignition is defined here as the process leading to the onset of a sustained combustion reaction between a combustible material and an oxidizer, typically air, which results in the release of heat. The combustible material may be in the gaseous, liquid, or solid phase. Ignition can also refer to the original cause of the fire or the point when a specific fuel element is ignited such as a structure. The combustion reaction may be either a homogeneous gas phase reaction (flaming ignition) or a heterogeneous surface reaction (smolder ignition). For either combustion reaction to occur, the temperature of the fuel and air must first be elevated above a certain value, often termed the “ignition temperature,” so that the heat released by the combustion reaction is larger than the heat losses from the reaction. However, this “ignition temperature” is not a property of the fuel material alone as it also depends on the circumstances in which the fuel is being...

This is a preview of subscription content, log in to check access.


  1. Ahrens M (2013) Brush, grass, and forest fires. National Fire Protection Association, Fire Analysis and Research Division, QuincyGoogle Scholar
  2. Atreya A (1998) Ignition of fires. Philos Trans R Soc Lond A 356(1748):2787–2813.  https://doi.org/10.1098/rsta.1998.0298 CrossRefGoogle Scholar
  3. Babrauskas V (2003) Ignition handbook. Fire Science Publishers, IssaquahGoogle Scholar
  4. Balch JK, Bradley BA, Abatzoglou JT, Chelsea Nagy R, Fusco EJ, Mahood AL (2017) Human-started wildfires expand the fire niche across the United States. Proc Natl Acad Sci 114(11):2946–2951.  https://doi.org/10.1073/pnas.1617394114 CrossRefGoogle Scholar
  5. Caton SE, Hakes RSP, Gorham DJ, Zhou A, Gollner MJ (2016) Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions. Fire Technol:1–45.  https://doi.org/10.1007/s10694-016-0589-z. Springer US
  6. Cohen J, Stratton R (2008) Home destruction examination Grass Valley Fire. http://www.treesearch.fs.fed.us/pubs/31544
  7. Consalvi JL, Nmira F, Fuentes A, Mindykowski P, Porterie B (2011) Numerical study of piloted ignition of forest fuel layer. Proc Combust Inst 33(2):2641–2648.  https://doi.org/10.1016/j.proci.2010.06.025 Elsevier IncCrossRefGoogle Scholar
  8. Cote AE (2003) Fire protection handbook. National Fire Protection Association, BostonGoogle Scholar
  9. Drysdale DD (2011) An introduction to fire dynamics. Wiley, West SussexCrossRefGoogle Scholar
  10. Fernandez-Pello AC (1994) The solid phase. In: Cox G (ed) Combustion fundamentals of fire. Academic Press Limited San Diego, pp 31–100Google Scholar
  11. Fernandez-Pello AC (2011) On fire ignition. In: Fire safety science – proceedings of the tenth international symposium, College Park, pp 25–42  https://doi.org/10.3801/IAFSS.FSS.10-25 CrossRefGoogle Scholar
  12. Fernandez-Pello AC (2017) Wildland fire spot ignition by sparks and firebrands. Fire Saf J 91:2–10.  https://doi.org/10.1016/j.firesaf.2017.04.040 CrossRefGoogle Scholar
  13. Fernandez-Pello AC, Lautenberger C, Rich D, Zak C, Urban JL, Hadden R, Scott S, Fereres S (2014) Spot fire ignition of natural fuel beds by hot metal particles, embers, and Sparks. Combust Sci Technol 187(1–2):269–295.  https://doi.org/10.1080/00102202.2014.973953 CrossRefGoogle Scholar
  14. Kanury AM (1988) Flaming ignition of solid fuels. In: DiNenno PJ (ed) SFPE handbook of fire protection engineering, 1st edn. Society of Fire Protection Engineers, National Fire Protection Association, Boston, p 1-326-339Google Scholar
  15. Lautenberger C, Fernandez-Pello AC (2008) Pyrolysis modeling, thermal decomposition, and transport processes in combustible solids. In: Sunden B, Faghri M (eds) Transport phenomena in fires. WIT Press, Southampton, pp 209–259CrossRefGoogle Scholar
  16. Manzello SL, Suzuki S (2014) Exposing decking assemblies to continuous wind-driven firebrand showers. Fire Safety Science 11:1339–1352.  https://doi.org/10.3801/IAFSS.FSS.11-1339 CrossRefGoogle Scholar
  17. Manzello SL, Cleary TG, Shields JR, Yang JC (2006) On the ignition of fuel beds by firebrands. Fire Mater 30.  https://doi.org/10.1002/fam.901
  18. Manzello SL, Shields JR, Cleary TG, Maranghides A, Mell WE, Yang JC, Hayashi Y, Nii D, Kurita T (2008) On the development and characterization of a firebrand generator. Fire Saf J 43:258–268.  https://doi.org/10.1016/j.firesaf.2007.10.001 CrossRefGoogle Scholar
  19. Manzello SL, Park SH, Cleary TG (2009) Investigation on the ability of glowing firebrands deposited within crevices to ignite common building materials. Fire Saf J 44(6):894–900.  https://doi.org/10.1016/j.firesaf.2009.05.001 CrossRefGoogle Scholar
  20. Manzello SL, Hayashi Y, Yoneki T, Yamamoto Y (2010) Quantifying the vulnerabilities of ceramic tile roofing assemblies to ignition during a firebrand attack. Fire Saf J 45(1):35–43.  https://doi.org/10.1016/j.firesaf.2009.09.002 CrossRefGoogle Scholar
  21. Manzello SL, Suzuki S, Nii D (2017) Full-scale experimental investigation to quantify building component ignition vulnerability from mulch beds attacked by firebrand showers. Fire Technol 53(2):535–551.  https://doi.org/10.1007/s10694-015-0537-3. Springer USCrossRefGoogle Scholar
  22. Maranghides A, Mell W (2013) Framework for addressing the national wildland urban interface fire problem – determining fire and ember exposure zones using a WUI hazard scale. NIST Technical Note 1748 Framework:1–33.  https://doi.org/10.6028/NIST.TN.1748
  23. McAllister S, Finney M (2014) Convection ignition of live forest fuels. Fire Saf Sci 11:1312–1325.  https://doi.org/10.3801/IAFSS.FSS.11-1312 CrossRefGoogle Scholar
  24. McAllister S, Finney M (2017) Autoignition of wood under combined convective and radiative heating. Proc Combust Inst 36(2):3073–3080.  https://doi.org/10.1016/j.proci.2016.06.110 CrossRefGoogle Scholar
  25. Mcallister S, Weise DR (2017) Effects of season on ignition of live wildland fuels using the forced ignition and flame spread test apparatus. Combust Sci Technol 182(2):2321–2247.  https://doi.org/10.1080/00102202.2016.1206086 CrossRefGoogle Scholar
  26. Mell WE, Manzello SL, Maranghides A, Butry D, Rehm RG (2010) The wildland–urban interface fire problem – current approaches and research needs. Int J Wildland Fire 19:238–251.  https://doi.org/10.1071/WF07131 CrossRefGoogle Scholar
  27. Mindykowski P, Fuentes A, Consalvi JL, Porterie B (2011) Piloted ignition of wildland fuels. Fire Saf J 46(1–2):34–40.  https://doi.org/10.1016/j.firesaf.2010.09.003 ElsevierCrossRefGoogle Scholar
  28. Pitts WM (2007) NIST Technical Note 1481: Ignition of Cellulosic Fuels by Heated and Radiative Surfaces, GaithersburgGoogle Scholar
  29. Quintiere JG (2006) Fundamental of fire phenomena.  https://doi.org/10.1002/0470091150 CrossRefGoogle Scholar
  30. Suzuki S, Manzello SL (2017) Experimental investigation of firebrand accumulation zones in front of obstacles. Fire Saf J 94(April):1–7.  https://doi.org/10.1016/j.firesaf.2017.08.007 Elsevier LtdCrossRefGoogle Scholar
  31. Suzuki S, Manzello SL, Lage M, Laing G (2012) Firebrand generation data obtained from a full-scale structure burn. Int J Wildland Fire 21(8):961–968.  https://doi.org/10.1071/WF11133 CrossRefGoogle Scholar
  32. T’ien JS, Shih HJ, Jiang CB, Ross HD, Miller FJ, Torero JL, Walther DC, Carlos Fernandez-Pello A (2001) Mechanisms of flame spread and smolder wave propagation. In: Ross HD (ed) Microgravity combustion. Academic Press, San Diego, pp 299–367Google Scholar
  33. Torero J (2016) Flaming ignition of solid fuels. In: Hurley MJ (ed) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 633–661CrossRefGoogle Scholar
  34. Torero JL, Simeoni A (2010) Heat and mass transfer in fires: scaling laws, ignition of solid fuels and application to forest fires. Open Thermodyn J 4(1):145–155.  https://doi.org/10.2174/1874396X01004010145 CrossRefGoogle Scholar
  35. Urban JL, Zak CD, Song J, Fernandez-Pello C (2016) Smoldering spot ignition of natural fuels by a hot metal particle. Proc Combust Inst 36(2):3211–3218.  https://doi.org/10.1016/j.proci.2016.09.014 CrossRefGoogle Scholar
  36. Urban JL, Zak C, Fernandez-Pello C (2018) Spot fire ignition of natural fuels by hot aluminum particles. Fire Technol.  https://doi.org/10.1007/s10694-018-0712-4. Springer US

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California BerkeleyBerkeleyUSA

Section editors and affiliations

  • Sayaka Suzuki
    • 1
  1. 1.National Research Institute of Fire and Disaster (NRIFD)TokyoJapan