Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

Living Edition
| Editors: Samuel L. Manzello

Ignition Sources

  • Anne Ganteaume
  • Alexandra D. Syphard
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-51727-8_43-1

Synonyms

Definition

Any ignition of natural or human origin (direct or indirect) that can provoke a wildfire.

Introduction

Fires have been burning on earth largely since the origin of plants as the existence of fire depends on a combination of fuel, sufficient oxygen levels, and a heat source (Pausas and Keeley 2009). Natural heat sources to spark fires, primarily lightning, but also including other natural events, such as volcanoes or meteors, have existed through the history of the planet. Over time, the extent and frequency of fires have oscillated according to changes in climate and vegetation. Early in the Quaternary, high climate seasonality favored fire expansion in southern Europe as it did in many other ecosystems of the northern and southern hemispheres. Later, during the Neolithic Age, humans began affecting the fire regime by accidentally or deliberately setting and stopping fires and by...

This is a preview of subscription content, log in to check access.

References

  1. Alexandrian D, Esnault F, Calabri G (1999) Forest fires in the Mediterranean area. Unasylva 197(50):35–41Google Scholar
  2. Anderson RS, Byrd BF (1998) Late-Holocene vegetation changes from the Las Flores Creek coastal lowlands, San Diego County, California. Madrono 45:171–182Google Scholar
  3. Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL (2017) Human-started wildfires expand the fire niche across the United States. Proc Natl Acad Sci 114(11):2946–2951CrossRefGoogle Scholar
  4. Bonora L, Conese C, Lampin C, Martin P, Martínez J, Molina D, Salas J (2002) Towards methods for investigating on wildland fire causes. Euro-Mediterranean Wildland Fire Laboratory, a “wall-less” Laboratory for Wildland Fire Sciences and Technologies in the Euro-Mediterranean Region. Deliverable D-05-02Google Scholar
  5. Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW (2011) The human dimension of fire regimes on Earth. J Biogeogr 38:2223–2236CrossRefGoogle Scholar
  6. Bryant C (2008) Understanding bushfire: trends in deliberate vegetation fires in Australia. Technical and background paper 27. 35pGoogle Scholar
  7. Camia A, Durrant T, San-Miguel-Ayanz J (2013) Harmonized classification scheme of fire causes in the EU adapted for the European Fire Database of EFFIS. JRC scientific and policy reports, Luxembourg, publication office of the EUGoogle Scholar
  8. Carmona-Moreno C, Belward A, Malingreau JP, Hartley A, García-Alegre M, Antonovskiy M, Buchshtaber V, Pivoravov V (2005) Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Glob Chang Biol 11:1537–1555CrossRefGoogle Scholar
  9. Cdfdata.fire.ca.gov (2018) Statistics & events. [online] Available at: http://cdfdata.fire.ca.gov/incidents/incidents_statsevents. Accessed 2 Mar 2018
  10. Collins KM, Penman TD, Price OF (2016) Some wildfire ignition causes pose more risk of destroying houses than others. PLoS One 11(9):e0162083CrossRefGoogle Scholar
  11. Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F (2006) Lightning induced fires in the Alpine Region: an increasing problem. In: V international conference on forest fire research, CoimbraCrossRefGoogle Scholar
  12. Cruz MG, Sullivan AL, Gould JS, Sims NC, Bannister AJ, Hollis JJ, Hurley RJ (2012) Anatomy of a catastrophic wildfire: the Black Saturday Kilmore East fire in Victoria, Australia. For Ecol Manag 284:269–285CrossRefGoogle Scholar
  13. Cwfis.cfs.nrcan.gc.ca (2018) Canadian National Fire Database/Canadian Wildland Fire Information System/Natural Resources Canada. [online] Available at: http://cwfis.cfs.nrcan.gc.ca/ha/nfdb. Accessed 7 Mar 2018
  14. Doherty JJ, Anderson SAJ, Pearce G (2008) An analysis of wildfire records in New Zealand: 1991–2007. (Scion report). Scion, ChristchurchGoogle Scholar
  15. Ellis S, Kanowski P, Whelan R (2004) National inquiry into bushfire mitigation and management. Commonwealth of Australia, CanberraGoogle Scholar
  16. FAO (1999) Report on public policies affecting forest fires. FAO forestry paper 138. Food and Agriculture Organization of the United Nations, Rome, 369ppGoogle Scholar
  17. Gammage B (2011) The biggest estate on earth how aborigines made Australia. Allen & Unwin, Crows Nest, N.S.WGoogle Scholar
  18. Ganteaume A, Guerra F (2018) Explaining the spatio-seasonal variation of fires by their causes: the case of southeastern France. Appl Geogr 90:69–81CrossRefGoogle Scholar
  19. Ganteaume A, Jappiot M (2013) What causes large fires in Southern France. For Ecol Manag 294:76–85CrossRefGoogle Scholar
  20. Ganteaume A, Jappiot M, Long M, Lampin-Maillet C, Duché Y, Savazzi R, Bonora L, Conese C, Piwnicki J, Ubysz B, Szczygiel R, Galante M, Ferreira A, Suarez-Beltran J (2009) State of the art (Final Report). Deliverable D 1.2. Contract number 384 340 “Determination of forest fire causes and harmonization for reporting them”. European Commission-JRC, p 278Google Scholar
  21. Ganteaume A, Camia A, Jappiot M, San Miguel-Ayanz J, Long-Fournel M, Lampin C (2012) A review of the main driving factors of forest fire ignition over Europe. Environ Manag 51(3):651–662CrossRefGoogle Scholar
  22. Genton MG, Butry DT, Gumpertz ML, Prestemon JP (2006) Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida. Int J Wildland Fire 15:87–97CrossRefGoogle Scholar
  23. Gonzalez-Olabarria J, Brotons L, Gritten D, Tudela A, Angel Teres J (2012) Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int J Wildland Fire 21:905–914CrossRefGoogle Scholar
  24. Granström A (1993) Spatial and temporal variation in lightning ignitions in Sweden. Journal of Vegetation Science 4:737–744CrossRefGoogle Scholar
  25. Gude PH, Jones K, Rasker R, Greenwood MC (2013) Evidence for the effect of homes on wildfire suppression costs. Int J Wildland Fire 22(4):537–548CrossRefGoogle Scholar
  26. Johnson EA (1992) Fire and vegetation dynamics. Studies from the North American boreal forest. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  27. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in mediterranean ecosystems ecology, evolution and management. Cambridge University Press, Cambridge, UK. 528pGoogle Scholar
  28. Lovreglio R, Leone V, Giaquinto P, Notarnicola A (2006) New tools for the analysis of fire causes and their motivations: the Delphi technique. For Ecol Manag 234(1):18–33CrossRefGoogle Scholar
  29. Mann ML, Batllori E, Moritz MA, Waller EK, Berck P, Flint AL, Flint LE, Dolfi E (2016) Incorporating anthropogenic influences into fire probability models: effects of human activity and climate change on fire activity in California. PLoS One 11(4):e0153589CrossRefGoogle Scholar
  30. Martínez J, Vega-Garcia C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252CrossRefGoogle Scholar
  31. Moreira F, Vaz P, Catry F, Silva JS (2009) Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildland Fire 18:563–574CrossRefGoogle Scholar
  32. Müller MM, Vacik H, Diendorfer G, Arpaci A, Formayer H, Gossow H (2013) Analysis of lightning-induced forest fires in Austria. Theor Appl Climatol 111:183–193CrossRefGoogle Scholar
  33. Nash CH, Johnson EA (1996) Synoptic climatology of lightning-caused forest fires in subalpine and boreal forests. Can J For Res 26:1859–1874CrossRefGoogle Scholar
  34. Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601CrossRefGoogle Scholar
  35. Penman TD, Bradstock RA, Price O (2013) Modelling the determinants of ignition in the Sydney Basin, Australia: implications for future management. Int J Wildland Fire 22:469–478CrossRefGoogle Scholar
  36. Podur J, Martell DL, Csillag F (2003) Spatial patterns of lightning caused forest fires in Ontario, 1976–1998. Ecol Model 164:1–20CrossRefGoogle Scholar
  37. Pyne SJ (2001) Fire in America. Princeton University Press, PrincetonGoogle Scholar
  38. Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland–urban interface in the United States. Ecol Appl 15(3):799–805CrossRefGoogle Scholar
  39. Renkin RA, Despain DG (1992) Fuel moisture, forest type, and lightning-caused fire in Yellowstone National Park. Can J For Res 22:37–45CrossRefGoogle Scholar
  40. San-Miguel-Ayanz J, Camia A (2010) Forest fires. In: Mapping the impacts of natural hazards and technological accidents in Europe: an overview of the last decade. EEA Technical report No 13/2010, Publications Office of the European Union, Luxembourg, pp 49–55Google Scholar
  41. Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM (2003) Large forest fires in Canada, 1959–1997. J Geophys Res 108:FFR5-1–FFR5-12Google Scholar
  42. Syphard AD, Keeley JE (2015) Location, timing and extent of wildfire vary by cause of ignition. Int J Wildland Fire 24(1):37–47CrossRefGoogle Scholar
  43. Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007) Human influence on California fire regimes. Ecol Appl 17(5):1388–1402CrossRefGoogle Scholar
  44. Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK (2008) Predicting spatial patterns of fire on a southern California landscape. Int J Wildland Fire 17(5):602–613CrossRefGoogle Scholar
  45. Syphard AD, Radeloff VC, Hawbaker TJ, Stewart SI (2009) Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems. Conserv Biol 23(3):758–769CrossRefGoogle Scholar
  46. Syphard AD, Keeley JE, Pfaff AH, Ferschweiler K (2017) Human presence diminishes the importance of climate in driving fire activity across the United States. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1713885114
  47. United Nations Economic Commission for Europe Forest fire statistics (2011) UNECE Timber Committee, United Nations, Report ECE/TIM/BULL/2002/4Google Scholar
  48. Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M (2008) Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat Sci Rev 27:1181–1196CrossRefGoogle Scholar
  49. Vazquez A, Moreno JM (1998) Patterns oflightning-, and people-caused fires in peninsular Spain. Int. J. Wildland Fires 8(2):103–115CrossRefGoogle Scholar
  50. Weber R (1999) Bushfire causes. Paper presented at Paper presented at the FIRE! The Australian experience conference, AdelaideGoogle Scholar
  51. Wilson C (2009) Why start wildfires? The motivation behind arsons and accidents. Northland DOC, Unpublished reportGoogle Scholar
  52. Yang J, He HS, Shifley SR, Gustafson EJ (2007) Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. For Sci 53:1–15Google Scholar
  53. Yegres LE (1998) Control de Incendios forestales en Venezuela. Presented at the First South American Seminar/Fifth Technical Meeting on the Control of Forest Fires, Belo Horizonte, 29/06-07/02, 1998Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RECOVER-EMRIRSTEAAix-en-ProvenceFrance
  2. 2.Conservation Biology InstituteCorvallisUSA

Section editors and affiliations

  • Raphaele Blanchi
    • 1
  1. 1.Land & WaterCSIROMelbourneAustralia