Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

Living Edition
| Editors: Samuel L. Manzello

Dry Thunderstorms

  • Nicholas J. NauslarEmail author
  • Benjamin J. Hatchett
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-51727-8_176-1

Synonyms

Definition

Dry thunderstorms are defined as cumulonimbus clouds that produce cloud-to-ground lightning strikes with little to no precipitation reaching the ground. The “dry” in dry thunderstorms is relative as there is no standardized threshold for precipitation accumulation to classify a thunderstorm as being “dry.” The National Weather Service and peer-reviewed literature often use <2.5 mm (0.1 in.) and occasionally <6.35 mm (0.25 in.) to delineate dry thunderstorms Storm Prediction Center (SPC) (Nauslar et al. 2013).

Introduction

Dry thunderstorms, also referred to as dry lightning, produce cloud-to-ground (CG) lightning with little to no rainfall reaching the surface. While there is no fundamental difference between how typical thunderstorms and dry thunderstorms form, the distinction arises from the environments they develop in and the resultant precipitation totals. Dry thunderstorms form in environments that have marginally...

This is a preview of subscription content, log in to check access.

References

  1. Abatzoglou JT, Kolden CA (2013) Relationships between climate and macroscale area burned in the western United States. Int J Wildland Fire 22:1003–1020CrossRefGoogle Scholar
  2. ADFFM (Arizona Department of Forestry and Fire Management) (2013) Yarnell Hill Fire serious accident investigation report. September 23. Phoenix, AZGoogle Scholar
  3. Amatulli G, Peréz-Cabello F, de la Riva J (2007) Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecol Model 200(3–4):321–333. https://doi.org/10.1016/J.ECOLMODEL.2006.08.001 CrossRefGoogle Scholar
  4. Associated Press (2017) 62 killed in Portugal forest fires, many dying in their cars as flames weep road. Los Angeles Times. Accessible: http://www.latimes.com/world/la-fg-portugal-forest-fires-20170617-story.html
  5. Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL (2017) Human expansion of the fire niche. Proc Natl Acad Sci 114(11):2946–2951. https://doi.org/10.1073/pnas.1617394114 CrossRefGoogle Scholar
  6. Bessie WC, Johnson EA (1995) The relative importance of fuels and weather on fire behavior in sub-alpine forests. Ecology 76:747–762CrossRefGoogle Scholar
  7. Bothwell PD (2008a) Predicting the location and intensity of lightning using an experimental automated statistical method. In: Third conference on meteorological applications of lightning data. Amer. Meteor. Soc., New Orleans, 6 ppGoogle Scholar
  8. Bothwell PD (2008b) Evaluation of experimental/automated lightning forecasts for western U.S. fire season and significant lightning outbreaks in the eastern U.S. In: 2nd international lightning detection conference, April 24–25, Tucson, AZ. Vaisala, Inc, Tucson, 8 ppGoogle Scholar
  9. Bothwell PD (2009) Development, operational use, and evaluation of the perfect prog national lightning prediction system at the Storm Prediction Center. Preprints, Fourth conference on the meteorological applications of lightning data, Phoenix, AZ, Amer. Meteor. Soc., 6.2. Available online at ams.confex.com/ams/89annual/webprogram/Paper150697.html
  10. Bright DR, Wandishin MS, Jewell R, Weiss SJ (2005) A physically based parameter for lightning prediction and its calibration in ensemble forecasts. 85th AMS annual meeting, American Meteorological Society - Combined Preprints 1993, pp 5699–5709Google Scholar
  11. Carleton AM (1986) Synoptic-dynamic character of “bursts” and “breaks” in the southwest U.S. summer precipitation singularity. J Climatol 6:605–623CrossRefGoogle Scholar
  12. Changnon SA (2001) Thunderstorm rainfall in the conterminous United States. Bull Am Meteorol Soc 82:1925–1940.  https://doi.org/10.1175/1520-0477(2001)082<1925:TRITCU>2.3.CO;2 CrossRefGoogle Scholar
  13. Clark AJ, Weiss SJ, Kain JS, Jirak IL, Coniglio M, Melick CJ, Siewert C, Sobash RA, Marsh PT, Dean AR, Xue M, Kong F, Thomas KW, Wang Y, Brewster K, Gao J, Wang X, Du J, Novak DR, Barthold FE, Bodner MJ, Levit JJ, Entwistle CB, Jensen TL, Correia J (2012) An overview of the 2010 hazardous weather testbed experimental forecast program spring experiment. Bull Am Meteorol Soc 93:55–74. https://doi.org/10.1175/BAMS-D-11-00040.1 CrossRefGoogle Scholar
  14. Conedera M, Cesti G, Pezzatti G, Zumbrunnen T, Spinedi F (2006) Lightning-induced fires in the Alpine region: an increasing problem. For Ecol Manag 234. https://doi.org/10.1016/j.foreco.2006.08.096 CrossRefGoogle Scholar
  15. Cotton WR, George RL, Wetzel PJ, McAnelly RL (1983) A Long-Lived Mesoscale Convective Complex. Part I: The Mountain-Generated Component. Mon Wea Rev 111:1893–1918. https://doi.org/10.1175/1520-0493(1983)111<1893:ALLMCC>2.0.CO;2 CrossRefGoogle Scholar
  16. Douglas MW, Maddox RA, Howard K, Reyes S (1993) The Mexican monsoon. J Clim 6:1665–1677CrossRefGoogle Scholar
  17. Evett RR, Mohrle CR, Hall BL, Brown TJ, Stephens SL (2008) The effect of monsoonal atmospheric moisture on lightning wildfire ignitions in southwestern North America. Agric Forest Meteorol 148:1478–1487CrossRefGoogle Scholar
  18. Favors JE, Abatzoglou JT (2013) Regional surges of monsoonal moisture into the southwestern United States. Mon Weather Rev 141:182–191. https://doi.org/10.1175/MWR-D-12-00037.1 CrossRefGoogle Scholar
  19. Fujita TT (1985) The downburst: microburst and macroburst. SMRP research paper 210, University of Chicago, 122 pp. [NTIS PB85-148880]Google Scholar
  20. Fuquay DM, Baughman RG, Latham DJ (1979) A model for predicting lightning fire ignition in wildland fuels. USDA forest service research paper INT-217. Intermountain Forest and Range Experiment Station, Ogden, 22 ppGoogle Scholar
  21. Ganteaume A, Camia A, Jappiot M, San Miguel-Ayanz J, Long-Fournel M, Lampin C (2013) A review of the main driving factors of forest fire ignition over Europe. Environ Manag 51(3):651–662. https://doi.org/10.1007/s00267-012-9961-z CrossRefGoogle Scholar
  22. Gedalof Z, Peterson D, Mantua N (2005) Atmospheric, climatic, and ecological controls on extreme wildfire years in the northwestern United States. Ecol Appl 15:154–174CrossRefGoogle Scholar
  23. Goens DW, Andrews PL (1998) Weather and fire behavior factors related to the 1990 Dude Fire near Payson, Arizona. In: Proceedings: 2nd symposium on fire and forest meteorology. American Meteorological Society, Boston, pp 153–158Google Scholar
  24. Hall BL (2007) Precipitation associated with lightning-ignited wildfires in Arizona and New Mexico. Int J Wildland Fire 16:242–254CrossRefGoogle Scholar
  25. Hamilton DW, Lin Y-L, Weglarz RP, Kaplan ML (1998) Jetlet formation from diabatic forcing with applications to the 1994 Palm Sunday tornado outbreak. Mon Weather Rev 126:2061–2089CrossRefGoogle Scholar
  26. Higgins RW, Yao Y, Wang XL (1997) Influence of the North American Monsoon system on the U.S. summer precipitation regime. J Clim 10:2600–2622CrossRefGoogle Scholar
  27. Hockenberry HE (2017) Fire weather Services Product Specification. National Weather Service Instruction 10-401. Accessible: http://www.nws.noaa.gov/directives/sym/pd01004001curr.pdf
  28. Houze RA Jr (1993) Cloud dynamics. International Geophysics Series, Academic Press, WalthamGoogle Scholar
  29. Kaplan ML, Lin Y-L, Hamilton DW, Rozumalski RA (1998) The numerical simulation of an unbalanced jetlet and its role in the Palm Sunday 1994 tornado outbreak in Alabama and Georgia. Mon Weather Rev 126:2133–2165CrossRefGoogle Scholar
  30. Köppen W (1936) Das geographische System der Klimate. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie, 1C:1-44. Verlag von Gebrüder Borntraeger, BerlinGoogle Scholar
  31. Kuleshov Y, de Hoedt G, Wright W, Brewster A (2002) Thunderstorm distribution and frequency in Australia. Aust Meteorol Mag 51:145–154Google Scholar
  32. MacGorman DR, Rust WD (1998) The electrical nature of storms. Oxford University Press, New YorkGoogle Scholar
  33. Milne R (2004) A modified total totals index for thunderstorm potential over the Intermountain West. NOAA/NWS WR Tech. Attach. 04–04, www.wrh.noaa.gov/media/wrh/online_publications/TAs/ta0404.pdf
  34. Nauslar NJ, Kaplan ML, Wallmann J, Brown TJ (2013) A forecast procedure for dry thunderstorms. J Operational Meteor 1(17):200–214. https://doi.org/10.15191/nwajom.2013.0117 CrossRefGoogle Scholar
  35. Nauslar NJ, Hatchett BJ, Brown TJ, Kaplan ML, Mejia JF (2018) Impact of the North American Monsoon on wildfire activity in the southwest United States. Int J Climatol 1–16. https://doi.org/10.1002/joc.5899
  36. Ordóñez C, Saavedra A, Rodríguez-Pérez JR, Castedo-Dorado F, Covián E (2012) Using model-based geostatistics to predict lightning-caused wildfires. Environ Model Softw 29:44–50CrossRefGoogle Scholar
  37. Parisien M-A, Snetsinger S, Greenberg JA, Nelson CR, Schoennagel T, Dobrowski SZ, Moritz MA (2012) Spatial variability in wildfire probability across the western United States. Int J Wildland Fire 21:313–327CrossRefGoogle Scholar
  38. Rorig ML, Ferguson SA (1999) Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J Appl Meteorol 38:1565–1575.  https://doi.org/10.1175/1520-0450(1999)038<1565:COLAWF>2.0.CO;2 CrossRefGoogle Scholar
  39. Rorig ML, Ferguson SA (2002) The 2000 fire season: lightning-caused fires. J Appl Meteorol 41:786–791.  https://doi.org/10.1175/1520-0450(2002)041<0786:TFSLCF>2.0.CO;2 CrossRefGoogle Scholar
  40. Rorig ML, McKay SJ, Ferguson SA, Werth P (2007) Model-generated predictions of dry thunderstorm potential. J Appl Meteorol Climatol 46:605–614. https://doi.org/10.1175/JAM2482.1 CrossRefGoogle Scholar
  41. Schultz DM, Schumacher PN, Doswell CA, (2000) The Intricacies of Instabilities. Mon Wea Rev 128:4143–4148. https://doi.org/10.1175/1520-0493(2000)129<4143:TIOI>2.0.CO;2 CrossRefGoogle Scholar
  42. Tripoli GJ, Cotton WR (1989) Numerical study of an observed orogenic mesoscale convective system: Part 1. Simulated genesis and comparison with observations. Mon Weather Rev 117:272–304Google Scholar
  43. Veraverbeke S, Rogers BM, Goulden ML, Jandt RR, Miller CE, Wiggins EB, Randerson JT (2017) Lightning as a major driver of recent large fire years in North American boreal forests. Nat Clim Chang 7:529. https://doi.org/10.1038/nclimate3329 CrossRefGoogle Scholar
  44. Wakimoto RM (1985) Forecasting dry microburst activity over the high plains. Mon Weather Rev 113:1131–1143.  https://doi.org/10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2 CrossRefGoogle Scholar
  45. Wallmann J, Milne R, Smallcomb C, Mehle M (2010) Using the 21 June 2008 California lightning outbreak to improve dry lightning forecast procedures. Weather Forecast 25:1447–1462. https://doi.org/10.1175/2010WAF2222393.1 CrossRefGoogle Scholar
  46. Werth PA, Potter BE, Clements CB, Finney M, Goodrick SL, Alexander ME, Cruz MG, Forthofer JA, McAllister SS (2011) Synthesis of knowledge of extreme fire behavior: Volume I for Fire managers. United States Department of Agriculture Volume PNW-GTR-85Google Scholar
  47. Wierzchowski J, Heathcott M, Flannigan MD (2002) Lightning and lightning fire, Central Cordillera, Canada. Int J Wildland Fire 11:41–51CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.NOAA/NWS/NCEP Storm Prediction CenterNormanUSA
  2. 2.Division of Atmospheric SciencesDesert Research InstituteRenoUSA

Section editors and affiliations

  • Kuibin Zhou
    • 1
  1. 1.Nanjing Tech UniversityNanjingChina