Historical Shipwrecks, Archaeometry of

  • Nicolás C. CiarloEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-51726-1_3120-1

State of Knowledge and Current Debates


Archaeometry can be broadly defined as the field where knowledge and analytical methods and techniques from natural and applied sciences enhance research carried out in archaeology and related disciplines, such as art history. In this context, an interdisciplinary approach is of crucial relevance for the entire research process. Close interaction between different specialists allows for systematic means of collecting, analyzing, and interpreting data to be applied and to shed light on archaeological questions about the life of past societies. Until the 1990s, most studies were focused on answering inquiries related to dating, exploration, artifact function and use, material sources, and manufacture methods. From then on, research topics, scale of analysis, and materials considered have expanded. Likewise, some analytical means became more complex, while new ones were incorporated. Thus, it was possible to achieve a more comprehensive...

This is a preview of subscription content, log in to check access.


  1. Auer, J., and N. Nayling. 2014. The ship. In The Gresham ship project. A 16th-century merchantman wrecked in the Princes Channel, Thames estuary. volume 1: Excavation and Hull studies, British archaeological reports, British series 602, ed. J. Auer and T.J. Maarleveld, 19–46. Oxford: Archeopress.Google Scholar
  2. Bastida, R., D. Elkin, M. Grosso, M. Trassens, and J.P. Martin. 2004. The British sloop of war HMS Swift (1770): A case study of the effects of biodeterioration on the underwater cultural heritage of Patagonia. Corrosion Reviews 22 (5–6): 417–440.Google Scholar
  3. Bethencourt, M., T. Fernández-Montblanc, A. Izquierdo, M. González-Duarte, and C. Muñoz-MAS. 2017. Study of the influence of physical, chemical and biological conditions that influence the deterioration and protection of underwater cultural heritage. Science of the Total Environment 613–614: 98–114.Google Scholar
  4. Birch, T., M.F. Charlton, L. Biggs, Z.A. Stos-Gale, and M. Martinón-Torres. 2014. The cargo. In The Gresham ship project: A 16th-century merchantman wrecked in the Princes Channel, Thames estuary. volume 2: Contents and context, British archaeological reports, British series 606, ed. G. Milne and D. Sully, 53–69. Oxford: Archeopress.Google Scholar
  5. Björdal, C.G. 2012. Microbial degradation of waterlogged archaeological wood. Journal of Cultural Heritage 13 (Supplement 3): S118–S122.CrossRefGoogle Scholar
  6. Bojakowski, P., K. Custer Bojakowski, and P. Naughton. 2015. A comparison between structure from motion and direct survey methodologies on the Warwick. Journal of Maritime Archaeology 10: 159–180.CrossRefGoogle Scholar
  7. Camidge, K. 2009. HMS Colossus, an experimental site stabilization. Conservation and Management of Archaeological Sites 11 (2): 161–188.CrossRefGoogle Scholar
  8. Carrell, T.L. 2003. From Forest to Fairway: Hull Analysis of La Belle a Late 17th Century French Ship. Unpublished PhD dissertation, University of St. Andrews.Google Scholar
  9. Caruso Fermé, L. 2013. Los recursos vegetales en Arqueología. Estrategias de muestreo y estudio del material leñoso. Buenos Aires: Dunken.Google Scholar
  10. Castro, M.A., and V.B. Aldazabal. 2007. Maderas empleadas en la construcción naval. Embarcaciones halladas en la cuenca del Plata y Atlántico Sur. Buenos Aires: Dunken.Google Scholar
  11. Catsambis, A., B. Ford, and D.L. Hamilton, eds. 2011. The Oxford handbook of maritime archaeology. New York: Oxford University Press.Google Scholar
  12. Ciarlo, N.C. 2006. Metodología de estudio de artefactos ferrosos corroídos en un medio subacuático. Un caso de estudio: Las concreciones del sitio Hoorn. La Zaranda de Ideas 2: 87–106.Google Scholar
  13. Ciarlo, N.C. 2014. Arqueometalurgia de un sitio de naufragio del siglo XVIII: la corbeta de guerra HMS Swift (1770), Puerto Deseado, provincia de Santa Cruz (Argentina), British Archaeological Reports, International series 2596. Oxford: Archeopress.Google Scholar
  14. Ciarlo, N.C. 2015. Naval metals from mid 18th- to early 19th-century European shipwrecks: A first analytical approach. Historical Metallurgy 47 (2): 146–152.Google Scholar
  15. Ciarlo, N.C. 2016. Innovación tecnológica y conflicto naval en Europa Occidental, 1751–1815: Aportes arqueológicos e históricos al conocimiento de la metalurgia y sus aplicaciones en los barcos de guerra. Unpublished Ph.D. dissertation, University of Buenos Aires.Google Scholar
  16. Ciarlo, N.C., G. Maxia, M. Rañi, H. De Rosa, R. Geli Mauri, and G. Vivar Lombarte. 2016. Craft production of large quantities of metal artifacts at the beginnings of industrialization: Application of SEM-EDS and multivariate analysis on sheathing tacks from a British transport sunk in 1813. Journal of Archaeological Sciences: Reports 5: 263–275.Google Scholar
  17. Crespo-Solana, A., and N. Nayling. 2016. ForSEAdiscovery. Forest resources for Iberian Empires: Ecology and globalization in the age of discovery (16th-18th centuries). In A heritage for mankind: Proceedings of the 5th international congress on underwater archaeology, ed. I. Negueruela Martínez, R. Castillo Belinchón and P. Recio Sánchez (coord.), 896–904. Cartagena: Ministry of Education, Culture and Sport.Google Scholar
  18. De Rosa, H., N.C. Ciarlo, M. Pichipil, and A. Castelli. 2015. 19th century wooden ship sheathing. A case of study: The materials of Puerto Pirámides 1, Península Valdés. Procedia Materials Science 9: 177–186.CrossRefGoogle Scholar
  19. Drap, P., D. Merad, A. Mahiddine, J. Seinturier, D. Peloso, J.-M. Boï, B. Chemisky, and L. Long. 2013. Underwater photogrammetry for archaeology. What will be the next step? International Journal of Heritage in the Digital Era 2 (3): 375–394.CrossRefGoogle Scholar
  20. Elkin, D., C. Murray, R. Bastida, M. Grosso, A. Argüeso, D. Vainstub, C. Underwood, and N.C. Ciarlo. 2011. El naufragio de la HMS Swift (1770): Arqueología marítima en la Patagonia. Buenos Aires: Vázquez Mazzini Editores.Google Scholar
  21. Felkins, K., H.P. Leighly Jr., and A. Jankovic. 1998. The royal mail ship Titanic: Did a metallurgical failure cause a night to remember? JOM 50 (1): 12–18.CrossRefGoogle Scholar
  22. Fernández-Montblanc, T., R. Quinn, A. Izquierdo, and M. Bethencourt. 2016. Evolution of a shallow water wave-dominated shipwreck site: Fougueux (1805), Gulf of Cadiz. Geoarchaeology: An International Journal 31: 487–505.CrossRefGoogle Scholar
  23. Flatman, J., and M. Staniforth. 2006. Historical maritime archaeology. In The Cambridge companion to historical archaeology, ed. D. Hicks and M. Beaudry, 168–188. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Fors, Y., F. Jalilehvand, E.D. Risberg, C. Björdal, E. Phillips, and M. Sandström. 2012. Sulfur and iron analyses of marine archaeological wood in shipwrecks from the Baltic Sea and Scandinavian waters. Journal of Archaeological Science 39: 2521–2532.CrossRefGoogle Scholar
  25. Green, J., and M. Gainsford. 2003. Evaluation of underwater surveying techniques. The International Journal of Nautical Archaeology 32 (2): 252–261.CrossRefGoogle Scholar
  26. Gregory, D., P. Jensen, and K. Strætkvern. 2012. Conservation and in situ preservation of wooden shipwrecks from marine environments. Journal of Cultural Heritage 13 (Supplement 3): S139–S148.CrossRefGoogle Scholar
  27. Grenier, R., M.-A. Bernier, and W. Stevens, eds. 2007. The underwater archaeology of Red Bay: Basque shipbuilding and whaling in the 16th century. volume 5: Appendices, glossary and bibliography. Ottawa: Parks Canada.Google Scholar
  28. Gutiérrez Merino, E. 2009. La dendrocronología: métodos y aplicaciones. In Arqueologia Nàutica Mediterrània, Monografies del CASC 8, ed. X. Nieto and M.A. Cau, 309–321. Girona: Archaeological Museum of Catalonia.Google Scholar
  29. Lorentzen, B., S.W. Manning, D. Cvikel, and Y. Kahanov. 2014. High-precision dating the Akko 1 shipwreck, Israel: Wiggle-matching the life and death of a ship into the historical record. Journal of Archaeological Science 41: 772–783.CrossRefGoogle Scholar
  30. Maarleveld, T.J. 1995. Type or technique. Some thoughts on boat and ship finds as indicative of cultural traditions. The International Journal of Nautical Archaeology 24 (1): 3–7.CrossRefGoogle Scholar
  31. Macleod, I.D. 1994. Conservation of corroded metals – A study of ships’ fastenings from the wreck of HMS Sirius. In Ancient and historic metals conservation and scientific research, ed. D.A. Scott, J. Podany, and B.B. Considine, 265–278. Los Angeles: Getty Conservation Institute.Google Scholar
  32. Macleod, I.D. 2013. The mechanism and kinetics of in situ conservation of iron cannon on shipwreck sites. International Journal of Nautical Archaeology 42 (2): 382–391.CrossRefGoogle Scholar
  33. Macleod, I.D., and M. Pitrun. 1986. The effects of microstructure on long-term corrosion. In Proceedings of the Australasian corrosion association conference 26, vol. 2, 1–14. Adelaide: Australasian Corrosion Association.Google Scholar
  34. Macleod, I.D., and M. Pitrun. 1996. Metallography of copper and its alloys recovered from nineteenth century shipwrecks. In Marine archaeology. The global perspectives, ed. G. Kuppuram and K. Kumudamani, 347–356. New Delhi: New Gyan Offset Press.Google Scholar
  35. Mccarthy, J., and J. Benjamin. 2014. Multi-image photogrammetry for underwater archaeological site recording: An accessible, diver-based approach. Journal of Maritime Archaeology 9: 95–114.CrossRefGoogle Scholar
  36. Mccarthy, M., ed. 2009. Iron, steel & steamship archaeology: Proceedings of 2nd Australian seminar, held in Perth, Melbourne and Sydney, 2006. Fremantle: Australian National Centre of Excellence for Maritime Archaeology.Google Scholar
  37. Mentovich, E.D., D.S. Schreiber, Y. Goren, Y. Kahanov, H. Goren, D. Cvikel, and D. Ashkenazi. 2010. New insights regarding the Akko 1 shipwreck: A metallurgic and petrographic investigation of the cannonballs. Journal of Archaeological Science 37 (10): 2520–2528.CrossRefGoogle Scholar
  38. Mundo, I.A. 2012. Desde la interdisciplina: Análisis dendrocronológico del pecio de ZenCity. ¿Qué nos dicen los anillos de crecimiento de sus maderas? In Un mercante español en el Puerto de Buenos Aires (publication in CD), ed. M. Valentini and J. García Cano, 80–85. Buenos Aires: General Direction of Heritage.Google Scholar
  39. Nieto, J.F., M. Pujol, and G. Vivar, eds. 2016. El vaixell Triunfante: Una fita de la ciència i de la tècnica del segle XVIII, Monografies del CASC 12. Gerona: Centre d’Arqueologia Subaquàtica de Catalunya.Google Scholar
  40. Rich, S.A., N. Nayling, G. Momber, and A. Crespo Solana. 2017. Shipwrecks and Provenance: In-situ timber sampling protocols with a focus on wrecks of the Iberian shipbuilding tradition, British archaeological reports, access archaeology 42. Oxford: Archeopress.Google Scholar
  41. Samuels, L.E. 1992. Australia’s contribution to archaeometallurgy. Materials Characterization 29: 69–109.CrossRefGoogle Scholar
  42. Satchell, J., and J. Whitewright, eds. 2014. The Maritime Archaeology of Alum Bay: Two shipwrecks on the north-west coast of the Isle of Wight, England, British archaeological reports, British series 608. Oxford: Archeopress.Google Scholar
  43. Wayman, M.L. 2004. Metallography of archaeological alloys. In ASM handbook, volume 9: Metallography and microstructures, ed. G.F. Vander Voort, 468–477. USA: ASM International.Google Scholar
  44. Yamafune, K., R. Torres, and F. Castro. 2017. Multi-image photogrammetry to record and reconstruct underwater shipwreck sites. Journal of Archaeological Method and Theory 24 (3): 703–725.CrossRefGoogle Scholar

Further Readings

  1. Adams, J. 2001. Ships and boats as archaeological source material. World Archaeology 32 (3): 292–310.CrossRefGoogle Scholar
  2. Bass, G.F. 2011. The development of maritime archaeology. In The oxford handbook of maritime archaeology, ed. A. Catsambis, B. Ford, and D.L. Hamilton, 3–22. New York: Oxford University Press.Google Scholar
  3. Ciarlo, N.C., H. De Rosa, H. Lorusso, C. Vázquez, D. Elkin, and G. Custo. 2015. Veritas Temporis Filia: Non-destructive analysis of counterfeit and regal copper coins from the sloop-of-war HMS Swift (1770), by means of SEM-EDAX and WDXRF. Numismatic Chronicle 175: 227–242.Google Scholar
  4. Cohen, M., D. Ashkenazi, Y. Kahanov, A. Stern, S. Klein, and D. Cvikel. 2015. The brass nails of the Akko Tower wreck (Israel): Archaeometallurgical analyses. Metallography, Microstructure, and Analysis 4: 188–206.CrossRefGoogle Scholar
  5. Dillmann, P., G. Béranger, P. Piccardo, and H. Matthiesen, eds. 2007. Corrosion of metallic heritage artefacts. Investigation, conservation and prediction for long-term behaviour, European Federation of Corrosion Publications 48. Cambridge: Woodhead Publishing Ltd./Maney Publishing Ltd.Google Scholar
  6. Gould, R.A. 2011. Archaeology and the social history of ships. New York: Cambridge University Press.CrossRefGoogle Scholar
  7. Hocker, E., G. Almkvist, and M. Sahlstedt. 2012. The Vasa experience with polyethylene glycol: A conservator’s perspective. Journal of Cultural Heritage 13 (Supplement 3): S175–S182.CrossRefGoogle Scholar
  8. Labbe, M. 2010. A Preliminary Reconstruction of the Yassiada Sixteenth-Century Ottoman Wreck. Unpublished Master dissertation, Texas A&M University. Available at: http://nautarch.tamu.edu/Theses/pdf-files/Labbe-MA2010.pdf. Accessed 5 Sept 2017. Accessed 5 May 2017.
  9. Macleod, I. 1989. The application of corrosion science to the management of maritime archaeological sites. The Bulletin of the Australian Institute for Maritime Archaeology 13 (2): 7–16.Google Scholar
  10. Mertes, J., T. Thomsen, and J. Gulley. 2014. Evaluation of structure from motion software to create 3d models of late nineteenth century great lakes shipwrecks using archived diver-acquired video surveys. Journal of Maritime Archaeology 9: 173–189.CrossRefGoogle Scholar
  11. Moore, J.D. 2015. Long-term corrosion processes of iron and steel shipwrecks in the marine environment: A review of current knowledge. Journal of Maritime Archaeology 10 (3): 191–204.CrossRefGoogle Scholar
  12. Näsänen, L.M.E., N.G. González-Pereyra, S.A. Cretté, and P. Deviviés. 2013. The applicability of subcritical fluids to the conservation of actively corroding iron artifacts of cultural significance. The Journal of Supercritical Fluids 79: 289–298.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Archaeology, School of Philosophy & Letters, University of Buenos AiresNational Scientific and Technical Research Council (CONICET)Buenos AiresArgentina

Section editors and affiliations

  • Geoffrey N. Bailey
    • 1
  • Wendy van Duivenvoorde
  1. 1.The King's Manor, Department of ArchaeologyUniversity of YorkYorkUK