Skip to main content

Protein Crystallization in Space and Its Contribution to Drug Development

  • Living reference work entry
  • First Online:
Handbook of Space Pharmaceuticals

Abstract

It has been a long time since space experiments have been conducted to produce protein crystals in microgravity. High-quality crystals grown in space are brought back to the ground to obtain precise protein structural information, which can be used for drug discovery. JAXA, the Japanese space agency, has been conducting protein crystallization experiments since the 1990s. More precise structural data have been obtained for about 40–50% of protein types, with many results leading to drug discovery, for example, drugs for muscular dystrophy, breast cancer or periodontal disease. Various contrivances are necessary for the success of the space experiment. JAXA has been striving to promote space experiments by improving the protein sample conditions and developing crystallization containers optimized for space experiments to maximize the results of space experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aibara S, Morita Y (1992) Crystal growth of hen egg-white lysozyme using a crystallization vessel produced for a spacelab experiment. J Cryst Growth 116(3–4):289–293

    Article  CAS  Google Scholar 

  • Boyko KM, Timofeev VI et al (2016) Protein crystallization under microgravity conditions. Analysis of the results of Russian experiments performed on the International Space Station in 2005−2015. Crystallography Reports 61(5):718–729

    Article  CAS  Google Scholar 

  • Chayen NE, Helliwell JR (1999) Space-grown crystals may prove their worth. Nature 398:20

    Article  CAS  PubMed  Google Scholar 

  • Day J, McPherson A (1992) Macromolecular crystal growth experiments on international microgravity laboratory-1. Protein Sci 1(10):1254–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLucas LJ, Smith CD et al (1989) Protein crystal growth in microgravity. Science 246(4930):651–654

    Article  CAS  PubMed  Google Scholar 

  • García-Ruiz JM, González-Ramírez LA et al (2002) Granada crystallization box: a new device for protein crystallization by counter-diffusion techniques. Acta Crystallogr D58:1638–1642

    Google Scholar 

  • Gonzalez-DeWhitt KR, Spinale A (2019) A real-time protein crystal growth approach to crystallization on the International Space Station. Acta Crystallogr A75:a148

    Google Scholar 

  • Haruki R, Kimura T et al (2015) Safety evaluation of hemoglobin-albumin cluster “HemoAct” as a red blood cell substitute. Sci Rep 5:12778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashizume Y, Inaka K et al (2020) Methods for obtaining better diffractive protein crystals: from sample evaluation to space crystallization. Crystals 10(2):78

    Article  CAS  Google Scholar 

  • Inaka K, Tanaka H et al (2012) Numerical analysis of the diffusive field around a growing protein crystal in microgravity. Defect Diffusion Forum 323-325:565–569

    Article  CAS  Google Scholar 

  • Kendrew JC, Bodo G et al (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662–666

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Hashimoto T et al (2017) High-resolution structure discloses the potential for allosteric regulation of mitogen-activated protein kinase kinase 7. Biochem Biophys Res Commun 493(1):313–317

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Hashimoto T et al (2019) A microgravity environment improves structural resolution and endows cues for specific inhibition of mitogen-activated protein kinase kinase 7. Int J Microgravity Sci Appl 36(1):360102

    Google Scholar 

  • Komaki H, Maegaki Y et al (2020) Early phase 2 trial of TAS-205 in patients with Duchenne muscular dystrophy. Ann Clin Transl Neurol 7(2):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundrot CE, Judge RA et al (2001) Microgravity and macromolecular crystallography. Cryst Growth Des 1(1):87–99

    Article  CAS  Google Scholar 

  • Lee CP, Chernov AA (2002) Solutal convection around growing protein crystals and diffusional purification in Space. J Cryst Growth 240(3–4):531–544

    Article  CAS  Google Scholar 

  • Littke W, John C (1986) Protein single crystal growth under microgravity. J Cryst Growth 76(3):663–672

    Article  CAS  Google Scholar 

  • McPherson A (1999) Crystallization of biological macromolecules. Cold Spring Harbor Laboratory Press, New York, pp 437–455

    Google Scholar 

  • McPherson A, DeLucas LJ (2015) Microgravity protein crystallization. npj Microgravity 1:15010

    Article  PubMed  PubMed Central  Google Scholar 

  • McPherson A, Greenwood A et al (1991) The effect of microgravity on protein crystal growth. Adv Space Res 11(7):343–356

    Article  CAS  Google Scholar 

  • McPherson A, Malkin AJ et al (1999) The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals. J Cryst Growth 196(2–4):572–586

    Article  CAS  Google Scholar 

  • Merk A, Bartesaghi A et al (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165(7):1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore K, Long M et al (2001) Applications of protein crystallography in structural biology and drug design. AIAA (American Institute of Aeronautics and Astronautics) 2001-0325

    Google Scholar 

  • Ng JD, Sauter C et al (2002) Comparative analysis of space-grown and earth-grown crystals of an aminoacyl-tRNA synthetase: space-grown crystals are more useful for structural determination. Acta Crystallogr D58:645–652

    CAS  Google Scholar 

  • Okinaga T, Mohri I et al (2002) Induction of hematopoietic prostaglandin D synthase in hyalinated necrotic muscle fibers: its implication in grouped necrosis. Acta Neuropathol 104(4):377–384

    Article  CAS  PubMed  Google Scholar 

  • Otálora F, Novella ML et al (2001) Experimental evidence for the stability of the depletion zone around a growing protein crystal under microgravity. Acta Crystallogr D57:412–417

    Google Scholar 

  • Perutz MF, Rossmann MG et al (1960) Structure of hæmoglobin: a three-dimensional fourier synthesis at 5.5-Å. Resolution, obtained by X-ray analysis. Nature 185:416–422

    Article  CAS  PubMed  Google Scholar 

  • Pusey M, Witherow W et al (1988) Preliminary investigations into solutal flow about growing tetragonal lysozyme crystals. J Cryst Growth 90(1–3):105–111

    Article  CAS  Google Scholar 

  • Reichhardt T (2000) Expensive space crystal programme has produced little of scientific value, says panel. Nature 404:114

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto Y, Suzuki Y et al (2014) S46 Peptidases are the first exopeptidases to be members of clan PA. Sci Rep 4:4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto Y, Suzuki Y et al (2015) Structural and mutational analyses of dipeptidyl peptidase 11 from porphyromonas gingivalis reveal the molecular basis for strict substrate specificity. Sci Rep 5:11151

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakamoto Y, Suzuki Y et al (2019) Fragment-based discovery of the first nonpeptidyl inhibitor of an S46 family peptidase. Sci Rep 9:13587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato M, Tanaka H et al (2006) JAXA-GCF project- high-quality protein crystals grown under microgravity environment for better understanding of protein structure. Microgravity Sci Technol 18:184–189

    Article  CAS  Google Scholar 

  • Snell EH, Helliwell JR (2005) Macromolecular crystallization in microgravity. Rep Prog Phys 68:799–853

    Article  CAS  Google Scholar 

  • Snell EH, Judge RA et al (2001) Investigating the effect of impurities on macromolecule crystal growth in microgravity. Crystal Growth Design 1(2):151–158

    Article  CAS  Google Scholar 

  • Takahashi S, Ohta K et al (2013) JAXA protein crystallization in space: ongoing improvements for growing high-quality crystals. J Synchrotron Radiat 20:968–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Koga M et al (2019) JCB-SGT Crystallization devices applicable to PCG experiments and their crystallization conditions. Int J Microgravity Sci Appl 36(1):360107

    Google Scholar 

  • Tanaka H, Inaka K et al (2004a) A simplified counter diffusion method combined with a 1D simulation program for optimizing crystallization conditions. J Synchrotron Radiat 11:45–48

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Inaka K et al (2004b) Numerical analysis of the depletion zone formation around a growing protein crystal. Ann N Y Acad Sci 1027:10–19

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Yoshizaki I et al (2006) Diffusion coefficient of the protein in various crystallization solutions: the key to growing high-quality crystals in space. Microgravity Sci Technol 18:91–94

    Article  CAS  Google Scholar 

  • Tanaka H, Tsurumura T et al (2011) Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment. J Synchrotron Radiat 18(1):88–91

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Inaka K et al (2012) Controlling the diffusive field to grow a higher quality protein crystal in microgravity. Defect Diffusion Forum 323–325:549–554

    Article  CAS  Google Scholar 

  • Tanaka H, Sasaki S et al (2013) Numerical model of protein crystal growth in a diffusive field such as the microgravity environment. J Synchrotron Radiat 20:1003–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas BR, Chernov AA et al (2000) Distribution coefficients of protein impurities in ferritin and lysozyme crystals. Self-purification in microgravity. J Cryst Growth 211(1–4):149–156

    Article  CAS  Google Scholar 

  • Timofeev VI, Abramchik Y et al (2014) 3′-Azidothymidine in the active site of Escherichia coli thymidine phosphorylase: the peculiarity of the binding on the basis of X-ray study. Acta Crystallogr D70:1155–1165

    Google Scholar 

  • Timofeev VI, Abramchik Y et al (2016) Three-dimensional structure of E-Coli purine nucleoside phosphorylase at 0.99 resolution. Crystallography Reports 61(2):249–257

    Article  CAS  Google Scholar 

  • Vekilov PG, Thomas BR et al (1998) Effects of convective solute and impurity transport in protein crystal growth. J Phys Chem B 102(26):5208–5216

    Article  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Yokomaku K et al (2016) Artificial blood for dogs. Sci Rep 6:36782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokomaku K, Akiyama et al (2018) Core-shell protein cluster comprising haemoglobin and recombinant feline serum albumin as an artificial O2 carrier for cats. J Mater Chem B 6:2417–2425

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki I, Tsukamoto K et al (2013) Growth rate measurements of lysozyme crystals under microgravity conditions by laser interferometry. Rev Sci Instrum 84:103707

    Article  PubMed  CAS  Google Scholar 

  • Yoshizaki I, Yamada M et al (2019) Recent advance in high quality protein crystal growth experiment on the international space station by JAXA. Int J Microgravity Sci Appl 36(1):360101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izumi Yoshizaki .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamada, M. et al. (2021). Protein Crystallization in Space and Its Contribution to Drug Development. In: Pathak, Y., Araújo dos Santos, M., Zea, L. (eds) Handbook of Space Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-50909-9_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50909-9_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50909-9

  • Online ISBN: 978-3-319-50909-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics