Space Experiments Using C. elegans as a Model Organism

  • Noriaki Ishioka
  • Akira Higashibata
Living reference work entry


The new era of human exploration makes it more important to fully understand and provide countermeasures against the effects of the space environment on the human body. Caenorhabditis elegans (C. elegans) is a genetic model organism used to study physiology on Earth, and the utility of C. elegans has proven to be a highly versatile experimental animal in studies spanning the aspects of genetics, development, aging, muscle physiology, radiobiology, and other issues. Many of these basic research issues are also relevant to space biology and medicine as an attempt to understand the alterations of living systems exposed to the space environment and to quantify the risks of living and working in space. Therefore, before the ISS, many space experiments using C. elegans have been done. This chapter introduces recent space experiments conducted in ISS. All these experiments have shown that C. elegans is the good model for space biology and also a useful model for understanding human physiology and medicine. The first international C. elegans space experiment carried out in the ISS (International Space Station) under construction and the recent space experiments implemented in ISS after completion of assembly are introduced. These space experiments in ISS have shown that C. elegans is useful as a model organism of the space experiment, and the obtained results are interrelated, and also related to problems in space biology and medicine. All these experiments have shown that C. elegans is the good model for space biology and also a useful model for understanding human physiology and medicine.


C. elegans Model specimen Space experiment International Space Station (ISS) ICE-FIRST CERISE Space Aging Epigenetic experiment Nematode Muscle 


  1. Adachi R, Takaya T et al (2008) Spaceflight results in increase of thick filament but not thin filament proteins in the paramyosin mutant of Caenorhabditis elegans Adv Space Res 41:816–823CrossRefGoogle Scholar
  2. Adenle AA, Jhonsen B et al (2009) Review of the results from the International C. elegans First (ICE-FIRST). Adv Space Res 44:210–216. Scholar
  3. Basu P, Kruse CPS et al (2017) Growth in spaceflight hardware results in alterations to the transcriptome and proteome. Life Sci Space Res 15:88–96. Scholar
  4. Bottjer KP, Weinstein PP et al (1985) Effects of an azasteroid on growth, development and reproduction of the free-living nematodes Caenorhabditis briggsae and Panagrellus redivivus. Comp Biochem Physiol B 82(1):99–106CrossRefPubMedGoogle Scholar
  5. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94Google Scholar
  6. Buecher EJ, Hansen EL et al (1966) Ficoll activation of a protein essential for maturation of the free-living nematode Caenorhabditis briggsae. Exp Biol Med 121:390–393CrossRefGoogle Scholar
  7. Cheng AC, Lu NC et al (1979) Effect of particulate materials on population growth of the free-living nematode Caenorhabditis briggsae. Proc Soc Exp Biol Med 160:203–207CrossRefPubMedGoogle Scholar
  8. Etheridge T, Nemoto K et al (2011) The effectiveness of RNAi in Caenorhabditis elegans is maintained during spaceflight. PLoS One. Scholar
  9. Fire A, Xu S et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefGoogle Scholar
  10. Gao Y, Li S et al (2015a) Change in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during Shenzhou-8 mission. J Radiat Res 56(6):872–882. Scholar
  11. Gao Y, Xu D et al (2015b) Effects of microgravity on DNA damage response in Caenorhabditis elegans during Shenzhou-8 spaceflight. Int J Radiat Biol 91(7):531–539. Scholar
  12. Gao Y, Xu D et al (2017) The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight. Mutat Res 795:15–26. Scholar
  13. Harada S, Hashizume T et al (2016) Fluid dynamics alter Caenorhabditis elegans body length via TGF-β/DBL-1 neuromuscular signaling. NPJ Microgravity 2:16006. Scholar
  14. Hartman PS, Hlavacek A et al (2001) A comparison of mutations induced by accelerated iron particles versus those induced by low earth orbit space radiation in the FEM-3 gene of Caenorhabditis elegans. Mutat Res 474:47–55CrossRefPubMedGoogle Scholar
  15. Higashibata A, Fujimoto N et al (2005) The first international Caenorhabditis elegans first experiment. J Jpn Soc Microgravity Appl 22(3):145–150 (Japanese)Google Scholar
  16. Higashibata A, Szewczyk NJ et al (2006) Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight. J Exp Biol 209:3209–3218. Scholar
  17. Higashibata A, Higashitani N et al (2013) Space flight induces reduction of paramyosin and troponin T: proteomic analysis of space-flown Caenorhabditis elegans. Curr Biotechnol 2:262–271CrossRefGoogle Scholar
  18. Higashibata A, Hashizume T et al (2016) Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans. NPJ Microgravity 2:15022. Scholar
  19. Higashitani A, Higashibata A et al (2005) Checkpoint and physiological apoptosis in germ cells proceeds normally in spaceflown Caenorhabditis elegans. Apoptosis 10:949–954CrossRefPubMedGoogle Scholar
  20. Higashitani A, Hashizume T et al (2009) C. elegans RNAi space experiment (CERISE) in Japanese Experiment Module KIBO. Biol Sci Space 23:183–187CrossRefPubMedPubMedCentralGoogle Scholar
  21. Honda Y, Higashibata A et al (2012) Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans.
  22. Honda Y, Honda S et al (2014) Spaceflight and aging: reflecting on Caenorhabditis elegans in space. Gerontology 60(2):138–142. Scholar
  23. Ishioka N, Suzuki H et al (2004) Development and verification of hardware for life science experiments in the Japanese experiment module “KIBO” on the International Space Station. J Gravit Physiol 11(1):81–91PubMedGoogle Scholar
  24. Johnson EJ, Nelson A (1991) Caenorhabditis elegans: a model system for space biology studies. Exp Gerontol 26(2–3):299–309. Scholar
  25. Kobayashi H, Ishii N (2001) Separation of DNA by free flow electrophoresis in space. Biol Sci Space 15 Suppl:S129CrossRefPubMedGoogle Scholar
  26. Kobayashi H, Ishii N et al (1996) Bioprocessing in microgravity: free flow electrohoresis of C. elegans DNA. J Biotechnol 47(2–3):367–376CrossRefPubMedGoogle Scholar
  27. Leandro LJ, Szewczyk NJ et al (2007) Comparative analysis of Drosophila and Caenorhabditis elegans gene expression experiments in the European Soyuz flight to the International Space Station. Adv Space Res 40(4):506–512CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lu NC, Goetsch KM (1993) Carbohydrate requirement of Caenorhabditis elegans and the final development of a chemically defined medium. Nematologica 39:303–331CrossRefGoogle Scholar
  29. Nelson GA et al (1994a) Development and chromosome mechanics in nematodes: results from IML-1. Adv Space Res 14:209–214CrossRefPubMedGoogle Scholar
  30. Nelson GA et al (1994b) Radiation effects in nematodes: results from IML-1 experiments. Adv Space Res 14:87–91CrossRefPubMedGoogle Scholar
  31. Oczypok EA, Etheridge T et al (2012) Remote automated multi-generational growth and observation of an animal in low Earth orbit. J R Soc Interface 9:596–599CrossRefPubMedGoogle Scholar
  32. Qiao L, Luo S et al (2013) Reproductive and locomotory capacities of Caenorhabditis elegans were not affected by simulated variable and spaceflight during the Shenzhou-8 mission. Astrobiology 13(7):617–625. Scholar
  33. Selch F, Higashibata A et al (2008) Genomic response of nematode Caenorhabditis elegans to spaceflight. Adv Space Res 41(5):807–815CrossRefPubMedPubMedCentralGoogle Scholar
  34. Szewczyk NJ, Kozak E et al (2003) Chemically defined medium and Caenorhabditis elegans. BMC Biotechnol 3:19CrossRefPubMedPubMedCentralGoogle Scholar
  35. Szewczyk NJ, Mancinelli RL et al (2005) Caenorhabditis elegans survives atmospheric breakup of STS-107, space shuttle Columbia. Astrobiology 5:690–705CrossRefPubMedGoogle Scholar
  36. Szewczyk NJ, Tillman J et al (2008) Description of International Caenorhabditis elegans Experiment First Flight (ICE-FIRST). Adv Space Res 42:1072–1079CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wang C, Sang C et al (2008) Change of muscle related genes and proteins after spaceflight in Caenorhabditis elegans. Prog Biochem Biophys 35:1195–1201Google Scholar
  38. Warren P, Golden A et al (2013) Evaluation of the fluids mixing enclosure system for life science experiments a commercial Caenorhabditis elegans spaceflight experiment. Adv Space Res 51:2241–2250CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhao Y, Johnsen R et al (2005) Worms in space? A model biological dosimeter. Gravit Space Biol Bull 18:11–16PubMedGoogle Scholar
  40. Zhao Y, Lai K et al (2006) A mutational analysis of Caenorhabditis elegans in space. Mutat Res 601:19–29CrossRefPubMedGoogle Scholar
  41. Zhao L, Gao Y et al (2016) Mining potential biomarkers associated with space flight in Caenorhabditis elegans experienced Shenzhou-8 mission with multiple feature selection techniques. Mutat Res 791–792:27–34. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan
  2. 2.Human Spaceflight Technology DirectorateJapan Aerospace Exploration AgencyTsukubaJapan
  3. 3.School of Physical ScienceThe Graduate University of Advanced StudiesHayamaJapan
  4. 4.Graduate School of Medical and Dental SciencesKagosima UniversityKagoshimaJapan
  5. 5.Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan

Section editors and affiliations

  • Luis Zea
    • 1
  1. 1.BioServe Space TechnologiesUniversity of ColoradoBoulderUSA

Personalised recommendations