Fine Motor Skill Development in Children and Youth with Unilateral Cerebral Palsy

  • Susan V. Duff
  • Aviva L. Wolff
Living reference work entry


Hand and upper extremity skill development varies in children and youth with unilateral cerebral palsy. The sensorimotor control and function available during childhood and adolescence can significantly influence participation in a range of activities and environments. Following an overview of the development of neural integrity in this population, this chapter reviews the typical components of prehension and characteristics of upper extremity function. We then review typical and atypical prehension patterns as well as the key factors that influence function in children with unilateral cerebral palsy. These factors include muscle activation, prehension sensibility, anticipatory control, and selective motor control. Based on available evidence, the chapter reviews methods of assessment including the use of classification procedures and standardized outcome measures. It concludes with a brief overview of intervention strategies targeted to improve prehensile function.


Cerebral palsy Prehension Fine motor skills Hand function Dexterity Grasp 


  1. Alewijnse JV, Smeulders MJC, Kreulen M (2015) Short-term and long-term clinical results of the surgical correction of thumb-in-palm deformity in patients with cerebral palsy. J Pediatr Orthop 35(8):825–830PubMedGoogle Scholar
  2. Al-Oboudi W (2004) Characteristics of UE and whole body use. Neuro-IFRAH three-week certification course manual. Neuro-IFRAH, Redondo BeachGoogle Scholar
  3. Brandão MB, Ferre C, Kuo HC, Rameckers EA, Bleyenheuft Y, Hung YC, Friel K, Gordon AM (2014) Comparison of structured skill and unstructured practice during intensive bimanual training in children with unilateral spastic cerebral palsy. Neurorehabil Neural Repair 28(5):452–461CrossRefGoogle Scholar
  4. Cioni G, Sales B, Paolicelli PB, Petacchi E, Scusa MF, Canapicchi R (1999) MRI and clinical characteristics of children with hemiplegic cerebral palsy. Neuropediatrics 30(5):249–255CrossRefGoogle Scholar
  5. Cliff S (1979) The development of reach and grasp. Guynes Printing, El PasoGoogle Scholar
  6. Crajé C, Aarts P, Nijhuis-van der Sanden M, Steenbergen B (2010) Action planning in typically and atypically developing children (unilateral cerebral palsy). Res Dev Disabil 31(5):1039–1046CrossRefGoogle Scholar
  7. Duff SV (2012) Prehension. In: Cech D, Martin S (eds) Functional movement development across the life span, 3rd edn. WB Saunders, PhiladelphiaGoogle Scholar
  8. Eliasson A-C (2017) Can parents provide hand function training for their child with cerebral palsy? Dev Med Child Neurol 59(5):456CrossRefGoogle Scholar
  9. Eliasson A-C, Forssberg H, Hung Y-C, Gordon AM (2006) Development of hand function and precision grip control in individuals with cerebral palsy: a 13-year follow-up study. Pediatrics 118(4):e1226–e1236CrossRefGoogle Scholar
  10. Eliasson A-C, Ullenhag A, Wahlström U, Krumlinde-Sundholm L (2017) Mini-MACS: development of the Manual Ability Classification System for children younger than 4 years of age with signs of cerebral palsy. Dev Med Child Neurol 59(1):72–78CrossRefGoogle Scholar
  11. Eliasson A-C, Nordstrand L, Ek L, Lennartsson F, Sjöstrand L, Tedroff K et al (2018) The effectiveness of Baby-CIMT in infants younger than 12 months with clinical signs of unilateral-cerebral palsy; an explorative study with randomized design. Res Dev Disabil 72:191–201CrossRefGoogle Scholar
  12. Eyre JA (2007) Corticospinal tract development and its plasticity after perinatal injury. Neurosci Biobehav Rev 31(8):1136–1149CrossRefGoogle Scholar
  13. Ferre CL, Brandão M, Surana B, Dew AP, Moreau NG, Gordon AM (2017) Caregiver-directed home-based intensive bimanual training in young children with unilateral spastic cerebral palsy: a randomized trial. Dev Med Child Neurol 59(5):497–504CrossRefGoogle Scholar
  14. Fowler EG, Staudt LA, Greenberg MB, Oppenheim WL (2009) Selective Control Assessment of the Lower Extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol 51(8):607–614CrossRefGoogle Scholar
  15. Friel KM, Chakrabarty S, Martin JH (2013) Pathophysiological mechanisms of impaired limb use and repair strategies for motor systems after unilateral injury of the developing brain. Dev Med Child Neurol 55(Suppl 4):27–31CrossRefGoogle Scholar
  16. Gogola GR, Velleman PF, Xu S, Morse AM, Lacy B, Aaron D (2013) Hand dexterity in children: administration and normative values of the functional dexterity test. J Hand Surg Am 38:2426–2431CrossRefGoogle Scholar
  17. Gordon AM, Duff SV (1999a) Fingertip forces during object manipulation in children with hemiplegic cerebral palsy I: anticipatory scaling. Dev Med Child Neurol 41:166–175CrossRefGoogle Scholar
  18. Gordon AM, Duff SV (1999b) Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy. Dev Med Child Neurol 41(9):586–591CrossRefGoogle Scholar
  19. Gordon AM, Charles J, Duff SV (1999) Fingertip forces during object manipulation in children with hemiplegic cerebral palsy. II: bilateral coordination. Dev Med Child Neurol 41(3):176–185CrossRefGoogle Scholar
  20. Gordon AM, Bleyenheuft Y, Steenbergen B (2013) Pathophysiology of impaired hand function in children with unilateral cerebral palsy. Dev Med Child Neurol 55(Suppl 4):32–37CrossRefGoogle Scholar
  21. Gordon AM, Lewis SR, Eliasson AC, Duff SV (2003) Object release under varying task constraints in children with hemiplegic cerebral palsy. Dev Med Child Neurol 45:240–248CrossRefGoogle Scholar
  22. Granild-Jensen JB, Rackauskaite G, Flachs EM, Uldall P (2015) Predictors for early diagnosis of cerebral palsy from national registry data. Dev Med Child Neurol 57(10):931–935CrossRefGoogle Scholar
  23. Greaves S, Imms C, Dodd K, Krumlinde-Sundholm L (2013) Development of the mini-assisting hand assessment: evidence for content and internal scale validity. Dev Med Child Neurol 55(11):1030–1037CrossRefGoogle Scholar
  24. Gupta D, Barachant A, Gordon AM, Ferre C, Kuo H-C, Carmel JB et al (2017) Effect of sensory and motor connectivity on hand function in pediatric hemiplegia. Ann Neurol 82(5):766–780CrossRefGoogle Scholar
  25. Guzzetta A, Pizzardi A, Belmonti V, Boldrini A, Carotenuto M, D’Acunto G et al (2010) Hand movements at 3 months predict later hemiplegia in term infants with neonatal cerebral infarction. Dev Med Child Neurol 52(8):767–772CrossRefGoogle Scholar
  26. Hodge J, Goodyear B, Carlson H, Wei X-C, Kirton A (2017) Segmental diffusion properties of the corticospinal tract and motor outcome in hemiparetic children with perinatal stroke. J Child Neurol 32(6): 550–559CrossRefGoogle Scholar
  27. Holmefur MM, Krumlinde-Sundholm L (2016) Psychometric properties of a revised version of the Assisting Hand Assessment (Kids-AHA 5.0). Dev Med Child Neurol 58(6):618–624CrossRefGoogle Scholar
  28. Holmström L, Vollmer B, Tedroff K, Islam M, Persson JKE, Kits A et al (2010) Hand function in relation to brain lesions and corticomotor-projection pattern in children with unilateral cerebral palsy. Dev Med Child Neurol 52(2):145–152CrossRefGoogle Scholar
  29. Hubermann L, Boychuck Z, Shevell M, Majnemer A (2016) Age at referral of children for initial diagnosis of cerebral palsy and rehabilitation: current practices. J Child Neurol 31(3):364–369CrossRefGoogle Scholar
  30. Ito C. Upper extremity function. Lecture for Neuro-Practice Management, Chapman University. November 27, 2017Google Scholar
  31. Jakobson LS, Goodale MA (1991) Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp Brain Res 86(1):199–208CrossRefGoogle Scholar
  32. Jaspers E, Byblow WD, Feys H, Wenderoth N (2016) The corticospinal tract: a biomarker to categorize upper limb functional potential in unilateral cerebral palsy. Front Pediatr 3:112CrossRefGoogle Scholar
  33. Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16(3):235–254CrossRefGoogle Scholar
  34. Jongbloed-Pereboom M, Nijhuis-van der Sanden MWG, Saraber-Schiphorst N, Crajé C, Steenbergen B (2013a) Anticipatory action planning increases from 3 to 10 years of age in typically developing children. J Exp Child Psychol 114(2):295–305CrossRefGoogle Scholar
  35. Jongbloed-Pereboom M, Nijhuis-van der Sanden MWG, Steenbergen B (2013b) Norm scores of the box and block test for children ages 3-10 years. Am J Occup Ther 67:312–318CrossRefGoogle Scholar
  36. Kinnucan E, Van Heest A, Tomhave W (2010) Correlation of motor function and stereognosis impairment in upper limb cerebral palsy. J Hand Surg 35(8):1317–1322CrossRefGoogle Scholar
  37. Klingels K, Demeyere I, Jaspers E, De Cock P, Molenaers G, Boyd R et al (2012) Upper limb impairments and their impact on activity measures in children with unilateral cerebral palsy. Eur J Paediatr 16(5): 475–484CrossRefGoogle Scholar
  38. Krumlinde-Sundholm L, Ek L, Sicola E, Sjöstrand L, Guzzetta A, Sgandurra G, Cioni G, Eliasson AC (2017) Development of the hand assessment for infants: evidence of internal scale validity. Dev Med Child Neurol 59(12):1276–1283CrossRefGoogle Scholar
  39. Kuhtz-Buschbeck JP, Stolze H, Jöhnk K, Boczek-Funcke A, Illert M (1998) Development of prehension movements in children: a kinematic study. Exp Brain Res 122(4):424–432CrossRefGoogle Scholar
  40. Kuo H-C, Gordon AM, Henrionnet A, Hautfenne S, Friel KM, Bleyenheuft Y (2016) The effects of intensive bimanual training with and without tactile training on tactile function in children with unilateral spastic cerebral palsy: a pilot study. Res Dev Disabil 49–50: 129–139CrossRefGoogle Scholar
  41. Lang CE, Schieber MH (2004) Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J Neurophysiol 92(5):2802–2810CrossRefGoogle Scholar
  42. Lawrence DG, Kuypers HG (1968) The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain J Neurol 91(1):15–36CrossRefGoogle Scholar
  43. Lieber RL, Roberts TJ, Blemker SS, Lee SSM, Herzog W (2017) Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil 14(1):108CrossRefGoogle Scholar
  44. Louwers A, Krumlinde-Sundholm L, Boeschoten K, Beelen A (2017) Reliability of the assisting hand assessment in adolescents. Dev Med Child Neurol 59(9):926–932CrossRefGoogle Scholar
  45. Marneweck M, Kuo H-C, Smorenburg ARP, Ferre CL, Flamand VH, Gupta D et al (2018) The relationship between hand function and overlapping motor representations of the hands in the contralesional hemisphere in unilateral spastic cerebral palsy. Neurorehabil Neural Repair 32:62. Scholar
  46. Morgan C, Novak I, Dale RC, Guzzetta A, Badawi N (2014) GAME (Goals – Activity – Motor Enrichment): protocol of a single blind randomised controlled trial of motor training, parent education and environmental enrichment for infants at high risk of cerebral palsy. BMC Neurol 14:203CrossRefGoogle Scholar
  47. Napier JR (1956) The prehensile movement of the human hand. J Bone Joint Surg 38:902–913CrossRefGoogle Scholar
  48. Novak I, Morgan C, Adde L, Blackman J, Boyd RN, Brunstrom-Hernandez J et al (2017) Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr 171(9):897–907CrossRefGoogle Scholar
  49. O’Driscoll SW, Horii E, Ness R, Cahalan TD, Richards RR, An KN (1992) The relationship between wrist position, grasp size, and grip strength. J Hand Surg 17(1):169–177CrossRefGoogle Scholar
  50. Poole JL, Burtner PA, Torres TA, McMullen CK, Markham A, Marcum ML, Anderson JB, Qualls C (2005) Measuring dexterity in children using the Nine-hole Peg Test. J Hand Ther 18(3):348–351CrossRefGoogle Scholar
  51. Raghavan P, Krakauer JW, Gordon AM (2006) Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome. Brain J Neurol 129(Pt 6):1415–1425CrossRefGoogle Scholar
  52. Reedman SE, Beagley S, Sakzewski L, Boyd RN (2016) The Jebsen Taylor test of hand function: a pilot test-retest reliability study in typically developing children. Phys Occup Ther Pediatr 36:292–304CrossRefGoogle Scholar
  53. Rönnqvist L, Rösblad B (2007) Kinematic analysis of unimanual reaching and grasping movements in children with hemiplegic cerebral palsy. Clin Biomech (Bristol, Avon) 22(2):165–175CrossRefGoogle Scholar
  54. Sakzewski L, Ziviani J, Boyd R (2009) Systematic review and meta-analysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics 123(6):e1111–e1122CrossRefGoogle Scholar
  55. Sakzewski L, Ziviani J, Boyd RN (2013) Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics 133(1):e175–e204CrossRefGoogle Scholar
  56. Sakzewski L, Gordon A, Eliasson A-C (2014) The state of the evidence for intensive upper limb therapy approaches for children with unilateral cerebral palsy. J Child Neurol 29(8):1077–1090CrossRefGoogle Scholar
  57. Sanger TD, Chen D, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW (2006) Definition and classification of negative motor signs in childhood. Pediatrics 118:2159–2167CrossRefGoogle Scholar
  58. Sartorio F, Bravini E, Vercelli S, Ferriero G, Plebani G, Foti C et al (2013) The functional dexterity test: test-retest reliability analysis and up-to date reference norms. J Hand Ther 26:62–67; quiz 68CrossRefGoogle Scholar
  59. Schieber MH (1991) Individuated finger movements of rhesus monkeys: a means of quantifying the independence of the digits. J Neurophysiol 65(6):1381–1391CrossRefGoogle Scholar
  60. Smorenburg ARP, Ledebt A, Deconinck FJA, Savelsbergh GJP (2012) Deficits in upper limb position sense of children with Spastic Hemiparetic Cerebral Palsy are distance-dependent. Res Dev Disabil 33(3):971–981CrossRefGoogle Scholar
  61. Staudt M (2010) Brain plasticity following early life brain injury: insights from neuroimaging. Semin Perinatol 34(1):87–92CrossRefGoogle Scholar
  62. Steenbergen B, Jongbloed-Pereboom M, Spruijt S, Gordon AM (2013) Impaired motor planning and motor imagery in children with unilateral spastic cerebral palsy: challenges for the future of pediatric rehabilitation. Dev Med Child Neurol 55(Suppl 4):43–46CrossRefGoogle Scholar
  63. Sukal-Moulton T, Gaebler-Spira D, Krosschell KJ (2018) The validity and reliability of the Test of Arm Selective Control for children with cerebral palsy: a prospective cross-sectional study. Dev Med Child Neurol 31:1–9Google Scholar
  64. Tremblay J, Curatolo S, Leblanc M, Patulli C, Tang T, Darsaklis V, Bilodeau N, Dahan-Oliel N (2018) Establishing normative data for the Functional Dexterity Test in typically developing children aged 3-5 years. J Hand Ther. 31(1):S0894-1130(17)30293-4Google Scholar
  65. Uvebrant P (1988) Hemiplegic cerebral palsy. Aetiology and outcome. Acta Paediatr Scand Suppl 345:1–100CrossRefGoogle Scholar
  66. Verrel J, Bekkering H, Steenbergen B (2008) Eye–hand coordination during manual object transport with the affected and less affected hand in adolescents with hemiparetic cerebral palsy. Exp Brain Res 187(1): 107–116CrossRefGoogle Scholar
  67. Wagner LV, Davids JR, Hardin JW (2016) Selective control of the upper extremity scale: validation of a clinical assessment tool for children with hemiplegic cerebral palsy. Dev Med Child Neurol 58(6):612–617CrossRefGoogle Scholar
  68. Wolff AL, Raghavan P, Kaminski T, Hillstrom HJ, Gordon AM (2015) Differentiation of hand posture to object shape in children with unilateral spastic cerebral palsy. Res Dev Disabil 45–46:422–430CrossRefGoogle Scholar
  69. World Health Organization (2007) The international classification of functioning, disability and health, children and youth version. WHO, GenevaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physical Therapy, Crean College of Health and Behavioral SciencesChapman UniversityIrvineUSA
  2. 2.Department of RehabilitationHospital for Special SurgeryNew YorkUSA

Section editors and affiliations

  • Nancy Lennon
    • 1
  • Margaret O'Neil
    • 2
  1. 1.Nemours/Alfred I. duPont Hospital for ChildrenWilmingtonUSA
  2. 2.Drexel UniversityPhiladelphiaUSA

Personalised recommendations