Advertisement

Modeling Lipid Metabolism in Yeast

  • Eduard J. KerkhovenEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The various pathways and mechanisms behind fatty acid, lipid, and membrane biosynthesis together form a complex network. Moreover, lipid metabolism does not operate in isolation but rather functions in the context of a whole cell, surrounded by all its other metabolic pathways, a situation that results in additional connectivity and complexity. Computational models can aid to provide understanding of these complex networks and to make sense of interactions on a whole cell or genomic scale. In particular, these models have proven to be valuable to answer biotechnological questions, such as how to increase the biosynthesis of fatty acids. This chapter discusses the development and usage of genome-scale metabolic models in the light of lipid biosynthesis. A special focus is placed on baker’s yeast Saccharomyces cerevisiae and the oleaginous yeast Yarrowia lipolytica and the use of genome-scale metabolic models to answer biotechnological questions.

Notes

Acknowledgments

The author would like to acknowledge support from the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomic Science program (DE-SC0008744), and the Novo Nordisk Foundation.

References

  1. Agren R, Liu L, Shoaie S et al (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9:e1002980.  https://doi.org/10.1371/journal.pcbi.1002980CrossRefGoogle Scholar
  2. Asadollahi MA, Maury J, Patil KR et al (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11:328–334.  https://doi.org/10.1016/j.ymben.2009.07.001CrossRefPubMedGoogle Scholar
  3. Aung HW, Henry SA, Walker LP (2013) Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol 9:215–228.  https://doi.org/10.1089/ind.2013.0013CrossRefGoogle Scholar
  4. Beg QK, Vazquez A, Ernst J et al (2007) Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc Natl Acad Sci U S A 104:12663–12668.  https://doi.org/10.1073/pnas.0609845104CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bordel S, Agren R, Nielsen J (2010) Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput Biol 6:e1000859.  https://doi.org/10.1371/journal.pcbi.1000859CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burgard AP, Maranas CD (2003) Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol Bioeng 82:670–677.  https://doi.org/10.1002/bit.10617CrossRefPubMedGoogle Scholar
  7. Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V (2013) Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotech J 9:1043-1057.  https://doi.org/10.1002/biot.201300091CrossRefGoogle Scholar
  8. Chumnanpuen P, Zhang J, Nookaew I, Nielsen J (2012) Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast. Mol Gen Genomics 287:541–554.  https://doi.org/10.1007/s00438-012-0697-5CrossRefGoogle Scholar
  9. Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13:344–349.  https://doi.org/10.1016/j.mib.2010.03.003CrossRefPubMedPubMedCentralGoogle Scholar
  10. Förster J, Famili I, Fu P et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253.  https://doi.org/10.1101/gr.234503CrossRefPubMedPubMedCentralGoogle Scholar
  11. Heavner BD, Price ND (2015) Comparative analysis of yeast metabolic network models highlights progress, opportunities for metabolic reconstruction. PLoS Comput Biol 11:e1004530.  https://doi.org/10.1371/journal.pcbi.1004530CrossRefGoogle Scholar
  12. Henry CS, DeJongh M, Best AA et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982.  https://doi.org/10.1038/nbt.1672CrossRefPubMedGoogle Scholar
  13. Herrgård MJ, Swainston N, Dobson P et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160.  https://doi.org/10.1038/nbt1492CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kavšček M, Bhutada G, Madl T, Natter K (2015) Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Syst Biol 9:72.  https://doi.org/10.1186/s12918-015-0217-4CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J (2016) Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. npj Syst Biol Appl 2:16005.  https://doi.org/10.1038/npjsba.2016.5CrossRefGoogle Scholar
  16. Ledesma-Amaro R, Nicaud J-M (2016) Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 61:40–50.  https://doi.org/10.1016/j.plipres.2015.12.001CrossRefPubMedGoogle Scholar
  17. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10:291–305.  https://doi.org/10.1038/nrmicro2737CrossRefPubMedPubMedCentralGoogle Scholar
  18. Loira N, Dulermo T, Nicaud J-M, Sherman DJ (2012) A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst Biol 6:35.  https://doi.org/10.1186/1752-0509-6-35CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276.  https://doi.org/10.1016/j.ymben.2003.09.002CrossRefPubMedGoogle Scholar
  20. Nookaew I, Jewett MC, Meechai A et al (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2:71.  https://doi.org/10.1186/1752-0509-2-71CrossRefPubMedPubMedCentralGoogle Scholar
  21. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248.  https://doi.org/10.1038/nbt.1614CrossRefPubMedPubMedCentralGoogle Scholar
  22. Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102:2685–2689.  https://doi.org/10.1073/pnas.0406811102CrossRefPubMedPubMedCentralGoogle Scholar
  23. Patil KR, Rocha I, Förster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinforma 6:308.  https://doi.org/10.1186/1471-2105-6-308CrossRefGoogle Scholar
  24. Pitkänen E, Jouhten P, Hou J et al (2014) Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species. PLoS Comput Biol 10:e1003465.  https://doi.org/10.1371/journal.pcbi.1003465CrossRefPubMedPubMedCentralGoogle Scholar
  25. Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897.  https://doi.org/10.1038/nrmicro1023CrossRefPubMedGoogle Scholar
  26. Sánchez BJ, Nielsen J (2015) Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr Biol 7:846–858.  https://doi.org/10.1039/C5IB00083ACrossRefGoogle Scholar
  27. Sánchez BJ, Zhang C, Nilsson A et al (submitted) Improving phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraintsGoogle Scholar
  28. Schuetz R, Zamboni N, Zampieri M et al (2012) Multidimensional optimality of microbial metabolism. Science 336:601–604.  https://doi.org/10.1126/science.1216882CrossRefPubMedGoogle Scholar
  29. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9.  https://doi.org/10.1016/j.ymben.2012.08.007CrossRefPubMedGoogle Scholar
  30. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121.  https://doi.org/10.1038/nprot.2009.203CrossRefPubMedPubMedCentralGoogle Scholar
  31. Vongsangnak W, Klanchui A, Tawornsamretkit I et al (2016) Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species. Gene 583:121–129.  https://doi.org/10.1016/j.gene.2016.02.028CrossRefPubMedGoogle Scholar
  32. Väremo L, Gatto F, Nielsen J (2014) Kiwi: a tool for integration and visualization of network topology and gene-set analysis. BMC Bioin 15:408.  https://doi.org/10.1186/s12859-014-0408-9CrossRefGoogle Scholar
  33. Ye C, Xu N, Chen H et al (2015) Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella alpina. BMC Syst Biol 9:1.  https://doi.org/10.1186/s12918-014-0137-8CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Systems and Synthetic Biology, Department of Biology and Biological EngineeringChalmers University of TechnologyGöteborgSweden

Personalised recommendations