Advertisement

Formation of Bacterial Glycerol-Based Membrane Lipids: Pathways, Enzymes, and Reactions

  • Otto GeigerEmail author
  • Christian Sohlenkamp
  • Isabel M. López-Lara
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The model bacterium Escherichia coli contains the phospholipids phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine as major membrane lipids, and biosyntheses and functionalities of individual membrane lipids have mainly been studied in this organism. However, in other bacteria, additional and alternative glycerol-based membrane lipids are found, and in many cases neither their biosyntheses nor their functionalities are understood. Some Gram-negative bacteria have phosphatidylcholine in their standard repertoire, whereas many Gram-positive bacteria have glycosylated diacylglycerols and lysyl-phosphatidylglycerol in their membranes. Notably, phosphatidylinositol seems to be an essential lipid for Mycobacterium tuberculosis and Actinomycetes, and it might be formed in some proteobacteria. Under certain stress conditions, specific membrane lipids can be formed in order to minimize the stress exerted. For example, under phosphorus-limiting conditions of growth, some bacteria form glycerol-based membrane lipids lacking phosphorus such as glycolipids, sulfolipids, or betaine lipids. Challenge of proteobacteria with acid causes modifications of membrane lipids, such as formation of lysyl-phosphatidylglycerol. Modifications of the acyl residues of pre-existing glycerol-based membrane lipids include desaturation, cyclopropanation, cis-trans isomerization reactions, as well as bacterial plasmalogen biosynthesis.

Notes

Acknowledgments

Research in our lab was supported by grants from Consejo Nacional de Ciencia y Tecnología-México (CONACyT-Mexico) (178359 and 253549 in Investigación Científica Básica as well as 118 in Investigación en Fronteras de la Ciencia) and from Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM; PAPIIT IN202616, IN203612). We thank Angeles Moreno and Lourdes Martínez-Aguilar for their skillful technical assistance.

References

  1. Arendt W, Groenewold MK, Hebecker S, Dickschat JS, Moser J (2013) Identification and characterization of a periplasmic aminoacyl-phosphatidylglycerol hydrolase responsible for Pseudomonas aeruginosa lipid homeostasis. J Biol Chem 288:24717–24730CrossRefGoogle Scholar
  2. Barák I, Muchová K, Wilkinson AJ, O’Toole PJ, Pavlendová N (2008) Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol 68:1315–1327CrossRefGoogle Scholar
  3. Benning C (1998) Biosynthesis and function of the sulfolipid sulfoquinovosyldiacylglycerol. Annu Rev Plant Physiol Plant Mol Biol 49:53–75CrossRefGoogle Scholar
  4. Benning C (2007) Questions remaining in sulfolipid biosynthesis: a historical perspective. Photosynth Res 92:199–203CrossRefGoogle Scholar
  5. Conover GM, Martinez-Morales F, Heidtman ML, Luo ZQ, Tang M, Chen C, Geiger O, Isberg RR (2008) Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell Microbiol 10:514–528PubMedGoogle Scholar
  6. Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433CrossRefGoogle Scholar
  7. Danne L, Aktas M, Gleichenhagen J, Grund N, Wagner D, Schwalbe H, Hoffknecht B, Metzler-Nolte N, Narberhaus F (2015) Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase. Mol Microbiol 95:313–331CrossRefGoogle Scholar
  8. Dare K, Shepherd J, Roy H, Seveau S, Ibba M (2014) LysPGS formation in Listeria monocytogenes has broad roles in maintaining membrane integrity beyond antimicrobial peptide resistance. Virulence 5:534–546CrossRefGoogle Scholar
  9. Devers EA, Wewer V, Dombrink I, Dörmann P, Hölzl G (2011) A processive glycosyltransferase involved in glycolipid synthesis during phosphate deprivation in Mesorhizobium loti. J Bacteriol 193:1377–1384CrossRefGoogle Scholar
  10. Dowhan W, Bogdanov M, Mileykovskaya E (2008) Functional roles of lipids in membranes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 1–37Google Scholar
  11. Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G et al (2009) The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 5:e1000660CrossRefGoogle Scholar
  12. Garrett TA (2017) Major roles for minor bacterial lipids identified by mass spectrometry. Biochim Biophys Acta 1862:1319–1324CrossRefGoogle Scholar
  13. Geiger O, López-Lara IM, Sohlenkamp C (2013) Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 1831:503–513CrossRefGoogle Scholar
  14. Goddard-Borger ED, Williams SJ (2017) Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem J 474:827–849CrossRefGoogle Scholar
  15. Goldfine H (2010) The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res 49:493–498CrossRefGoogle Scholar
  16. Goldfine H (2017) The anaerobic biosynthesis of plasmalogens. FEMS Lett 591:2714–2719CrossRefGoogle Scholar
  17. Gómez-Lunar Z, Hernández-González I, Rodriguez-Torres MD, Souza V, Olmedo-Álvarez G (2016) Microevolution analysis of Bacillus coahuilensis unveils differences in phosphorus acquisition strategies and their regulation. Front Microbiol 7:58CrossRefGoogle Scholar
  18. Gopalakrishnan AS, Chen YC, Temkin M, Dowhan W (1986) Structure and expression of the gene locus encoding the phosphatidylglycerophosphate synthase of Escherichia coli. J Biol Chem 261:1329–1338PubMedGoogle Scholar
  19. Hacker S, Sohlenkamp C, Aktas M, Geiger O, Narberhaus F (2008) Multiple phospholipid N-methyltransferases with distinct substrate specificities are encoded in Bradyrhizobium japonicum. J Bacteriol 190:571–580CrossRefGoogle Scholar
  20. Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS (2016) The power of asymmetry: architecture and assembly of the Gram-negative outer membrane lipid bilayer. Annu Rev Microbiol 70:255–278CrossRefGoogle Scholar
  21. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane. Proc Natl Acad Sci USA 105:3963–3967CrossRefGoogle Scholar
  22. Hölzl G, Dörmann P (2007) Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 46:225–243CrossRefGoogle Scholar
  23. Jackson M, Crick DC, Brennan PJ (2000) Phosphatidylinositol is an essential phospholipid in mycobacteria. J Biol Chem 275:30092–30099CrossRefGoogle Scholar
  24. Jorasch P, Wolter FP, Zähringer U, Heinz E (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29:419–430CrossRefGoogle Scholar
  25. Jorge CD, Borges N, Santos H (2015) A novel pathway for the synthesis of inositol phospholipids uses cytidine diphosphate (CDP)-inositol as donor of the polar head group. Environ Microbiol 17:2492–2504CrossRefGoogle Scholar
  26. Kanfer J, Kennedy EP (1964) Metabolism and function of bacterial lipids II. Biosynthesis of phospholipids in Escherichia coli. J Biol Chem 239:1720–1726PubMedGoogle Scholar
  27. Kent C, Gee P, Lee SY, Bian X, Fenno JC (2004) A CDP-choline pathway for phosphatidylcholine biosynthesis in Treponema denticola. Mol Microbiol 51:471–481CrossRefGoogle Scholar
  28. Klement MLR, Öjemyr L, Tagscherer KE, Widmalm G, Wieslander Å (2007) A processive lipid glycosyltransferase in the small human pathogen Mycoplasma pneumoniae: involvement in host immune response. Mol Microbiol 65:1444–1457CrossRefGoogle Scholar
  29. Krol E, Becker A (2004) Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 272:1–17CrossRefGoogle Scholar
  30. Lopez D (2015) Molecular composition of functional microdomains in bacterial membranes. Chem Phys Lipids 192:3–11CrossRefGoogle Scholar
  31. López-Lara IM, Geiger O (2017) Bacterial lipid diversity. Biochim Biophys Acta 1862:1287–1299CrossRefGoogle Scholar
  32. López-Lara IM, Sohlenkamp C, Geiger O (2003) Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. Mol Plant-Microbe Interact 16:567–579CrossRefGoogle Scholar
  33. Lorenzen W, Ahrendt T, Bozhuyuk KAJ, Bode HB (2014) A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nature Chem Biol 10:425–427CrossRefGoogle Scholar
  34. Lu Y-J, ZhangY-M GKD, Qi J, Lee RE, Rock CO (2006) Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens. Mol Cell 23:765–772CrossRefGoogle Scholar
  35. Lu YH, Guan Z, Zhao J, Raetz CR (2011) Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli. J Biol Chem 286:5506–5518CrossRefGoogle Scholar
  36. Matsumoto K, Kusaka J, Nishibori A, Hara H (2006) Lipid domains in bacterial membranes. Mol Microbiol 61:1110–1117CrossRefGoogle Scholar
  37. Morii H, Ogawa M, Fukuda K, Taniguchi H, Koga Y (2010) A revised biosynthetic pathway for phosphatidylinositol in Mycobacteria. J Biochem 148:593–602CrossRefGoogle Scholar
  38. Moser R, Aktas M, Narberhaus F (2014a) Phosphatidylcholine biosynthesis in Xanthomonas campestris via a yeast-like acylation pathway. Mol Microbiol 91:736–750CrossRefGoogle Scholar
  39. Moser R, Aktas M, Fritz C, Narberhaus F (2014b) Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria. Mol Microbiol 92:959–972CrossRefGoogle Scholar
  40. Nelson DL, Cox MM (2017) Lehninger - Principles of Biochemistry, 7th edn. WH Freeman and Company, New YorkGoogle Scholar
  41. Nishijima S, Asami Y, Uetake N, Yamagoe S, Ohta A, Shibuya I (1988) Disruption of the Escherichia coli cls gene responsible for cardiolipin synthesis. J Bacteriol 170:775–780CrossRefGoogle Scholar
  42. Raetz CRH (1986) Molecular genetics of membrane phospholipids synthesis. Annu Rev Genet 20:253–295CrossRefGoogle Scholar
  43. Raetz CRH, Newman KF (1978) Neutral lipid accumulation in the membranes of Escherichia coli mutants lacking diglyceride kinase. J Biol Chem 253:3882–3887PubMedGoogle Scholar
  44. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295–329CrossRefGoogle Scholar
  45. Riekhof WR, Andre C, Benning C (2005) Two enzymes, BtaA and BtaB, are sufficient for betaine lipid biosynthesis in bacteria. Arch Biochem Biophys 441:96–105CrossRefGoogle Scholar
  46. Rock CO (2008) Fatty acids and phospholipids metabolism in prokaryotes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 59–96CrossRefGoogle Scholar
  47. Romantsov T, Culham DE, Caplan T, Garner J, Hodges RS, Wood JM (2017) ProP-ProP and ProP-phospholipid interactions determine the subcellular distribution of osmosensing transporter ProP in Escherichia coli. Mol Microbiol 103:469–482CrossRefGoogle Scholar
  48. Sahonero-Canavesi DX, López-Lara IM, Geiger O (2017) Membrane lipid degradation and lipid cycles in microbes. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids, Handbook of hydrocarbon and lipid microbiology, Springer International Publishing AG.  https://doi.org/10.1007/978-3-319-39782-5_38-1Google Scholar
  49. Sandoval-Calderón M, Geiger O, Guan Z, Barona-Gómez F, Sohlenkamp C (2009) A eukaryote-like cardiolipin synthase is present in Streptomyces coelicolor and in most actinobacteria. J Biol Chem 284:17383–17390CrossRefGoogle Scholar
  50. Shimojima M (2011) Biosynthesis and functions of the plant sulfolipid. Prog Lipid Res 50:234–239CrossRefGoogle Scholar
  51. Slavetinsky C, Kuhn S, Peschel A (2017) Bacterial aminoacyl phospholipids – biosynthesis and role in basic cellular processes and pathogenicity. Biochim Biophys Acta 1862:1310–1318CrossRefGoogle Scholar
  52. Smith AM, Harrison JS, Grube CD, Sheppe AEF, Sahara N, Ishii R, Nureki O, Roy H (2015) tRNA-dependent alanylation of diacylglycerol and phosphatidylglycerol in Corynebacterium glutamicum. Mol Microbiol 98:681–693CrossRefGoogle Scholar
  53. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159CrossRefGoogle Scholar
  54. Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162CrossRefGoogle Scholar
  55. Sohlenkamp C, de Rudder KE, Geiger O (2004) Phosphatidylethanolamine is not essential for growth of Sinorhizobium meliloti on complex culture media. J Bacteriol 186:1667–1677CrossRefGoogle Scholar
  56. Sohlenkamp C, Galindo-Lagunas KA, Guan Z, Vinuesa P, Robinson S, Thomas Oates J, Raetz CRH, Geiger O (2007) The lipid lysyl-phosphatidylglycerol is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions. Mol Plant-Microbe Interact 20:1421–1430CrossRefGoogle Scholar
  57. Sugimoto K, Sato N, Tsuzuki M (2007) Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett 581:4519–4522CrossRefGoogle Scholar
  58. Tan BK, Bogdanov M, Zhao J, Dowhan W, Raetz CR, Guan Z (2012) Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci USA 109:16504–16509CrossRefGoogle Scholar
  59. Vences-Guzmán MA, Goetting-Minesky MP, Guan Z, Castillo-Ramírez S, Córdoba-Castro LA, López-Lara IM, Geiger O, Sohlenkamp C, Fenno JC (2017) 1,2-Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway. Mol Microbiol 103:896–912CrossRefGoogle Scholar
  60. Vinuesa P, Neumann-Silkow F, Pacios-Bras C, Spaink HP, Martínez-Romero E, Werner D (2003) Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol Plant-Microbe Interact 16:159–168CrossRefGoogle Scholar
  61. Yao Y, Rock CO (2013) Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831:495–502CrossRefGoogle Scholar
  62. Zavaleta-Pastor M, Sohlenkamp C, Gao JL, Guan Z, Zaheer R, Finan TM, Raetz CRH, López-Lara IM, Geiger O (2010) Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Proc Natl Acad Sci USA 107:302–307CrossRefGoogle Scholar
  63. Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nature Rev Microbiol 6:222–233CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Otto Geiger
    • 1
    Email author
  • Christian Sohlenkamp
    • 1
  • Isabel M. López-Lara
    • 2
  1. 1.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  2. 2.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de México (UNAM)CuernavacaMéxico

Personalised recommendations