Regulation of Membrane Lipid Homeostasis in Bacteria upon Temperature Change

  • M. C. MansillaEmail author
  • D. de Mendoza
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Bacteria precisely remodel the fluidity of their membrane bilayer via the incorporation of proportionally more unsaturated fatty acids (or fatty acids with analogous properties, such as branched-chain fatty acids) as growth temperature decreases. This process, termed homeoviscous adaptation, is suited to disrupt the order of the lipid bilayer and optimizes the performance of a large array of cellular physiological processes at the new temperature. As such, microbes have developed molecular strategies to sense changes in membrane fluidity, provoked by a decrease in environmental temperature, and initiate cellular responses that upregulate the biosynthesis of either unsaturated, terminally branched, or shorter-chain fatty acids. In this review we describe some of the basic molecular strategies that bacteria use to sense temperature. While the activities of all biomolecules are altered as a function of temperature, the thermosensors we focus on here are molecules whose temperature sensitivity provides information about the thermal environment that is used to trigger an appropriate adjustment of membrane architecture. We also discuss selected examples of membrane and lipopolysaccharide remodeling induced by cold that involves changes in the activity of fatty acid biosynthetic enzymes or the expression of acyltransferases that modify the lipid A.



This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (FONCYT). M.C. Mansilla and D. de Mendoza are Career Investigators of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).


  1. Altabe SG, Mansilla MC, de Mendoza D (2013) Remodeling of membrane lipids by bacterial desaturases. In: Ntambi JM (ed) Stearoyl-CoA desaturase genes in lipid metabolism. Springer, New York, pp 209–231CrossRefGoogle Scholar
  2. Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical role of anteiso-C15:0 fatty acid in the growth of at low temperatures. Appl Environ Microbiol 63:3887–3894PubMedPubMedCentralGoogle Scholar
  3. Beckering CL, Steil L, Weber MH, Volker U, Marahiel MA (2002) Genome wide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184:6395–6402CrossRefGoogle Scholar
  4. Chazarreta Cifré L, Alemany M, de Mendoza D, Altabe S (2013) Exploring the biosynthesis of unsaturated fatty acids in Bacillus cereus ATCC 14579 and functional characterization of novel acyl-lipid desaturases. Appl Environ Microbiol 79:6271–6279CrossRefGoogle Scholar
  5. Cvec G, Marsh D (1987) Phospholipid bilayers: physical principles and models. Wiley-Interscience, New York, pp 2–28Google Scholar
  6. Cybulski LE, Martin M, Mansilla MC, Fernandez A, de Mendoza D (2010) Membrane thickness cue for cold sensing in a bacterium. Curr Biol 20:1539–1544CrossRefGoogle Scholar
  7. de Mendoza D (2014) Temperature sensing by membranes. Annu Rev Microbiol 68:101–116CrossRefGoogle Scholar
  8. de Mendoza D, Cronan JE (1983) Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem Sci 8:49–52CrossRefGoogle Scholar
  9. Diomandé SE, Chamot S, Antolinos V, Vasai F, Guinebretiere MH, Bornard I, Nguyen-the C, Broussolle V (2014) The CasKR two-component system is required for the growth of mesophilic and psychrotolerant Bacillus cereus strains at low temperatures. Appl Environ Microbiol 80:2493–2503CrossRefGoogle Scholar
  10. Diomandé SE, Nguyen-the C, Abee T, Tempelaars MH, Broussolle V, Brillard J (2015) Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. Int J Food Microbiol 213:110–117CrossRefGoogle Scholar
  11. Diomandé SE, Doublet B, Vasaï F, Guinebretiére M-H, Broussolle V, Brillard J (2016) Expression of the genes encoding the CasK/R two-component system and the DesA desaturase during Bacillus cereus cold adaptation. FEMS Microbiol Lett 363:pii: fnw174CrossRefGoogle Scholar
  12. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302PubMedPubMedCentralGoogle Scholar
  13. Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M (2002) Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 70:4092–4098CrossRefGoogle Scholar
  14. Klein W, Weber MH, Marahiel MA (1999) Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181:5341–5349PubMedPubMedCentralGoogle Scholar
  15. Li Y, Powell DA, Shaffer SA, Rasko DA, Pelletier MR, Leszyk JD, Scott AJ, Masoudi A, Goodlett DR, Wang X, Raetz CR, Ernst RK (2012) LPS remodeling is an evolved survival strategy for bacteria. Proc Natl Acad Sci U S A 109:8716–8721CrossRefGoogle Scholar
  16. Magnuson K, Jackovski S, Rock CO, Cronan JE Jr (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev 57:522–542PubMedPubMedCentralGoogle Scholar
  17. Mansilla MC, de Mendoza D (2005) The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol 183:229–235CrossRefGoogle Scholar
  18. Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688CrossRefGoogle Scholar
  19. Martin M, de Mendoza D (2013) Regulation of Bacillus subtilis DesK thermosensor by lipids. Biochem J 451:269–275CrossRefGoogle Scholar
  20. Martin N, Lombardia E, Altabe SG, de Mendoza D, Mansilla MC (2009) A lipA (yutB) mutant, encoding lipoic acid synthase, provides insight into the interplay between branched-chain and unsaturated fatty acid biosynthesis in Bacillus subtilis. J Bacteriol 191:7447–7455CrossRefGoogle Scholar
  21. Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, Fukase K, Kusumoto S, Sweet C, Miyake K, Akira S, Cotter RJ, Goguen JD, Lien E (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7:1066–1073CrossRefGoogle Scholar
  22. Parsons JB, Rock CO (2013) Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52:249–276CrossRefGoogle Scholar
  23. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136PubMedGoogle Scholar
  24. Phetsuksiri B, Jackson M, Scherman H, McNeil M, Besra GS, Baulard AR, Slayden RA, DeBarber AE, Barry CE III, Baird MS, Crick DC, Brennan PJ (2003) Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. J Biol Chem 278:53123–53130CrossRefGoogle Scholar
  25. Porrini L, Cybulski L, Altabe SG, Mansilla MC, de Mendoza D (2014) Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Microbiol Open 3:213–224CrossRefGoogle Scholar
  26. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329CrossRefGoogle Scholar
  27. Rebeil R, Ernst RK, Jarrett CO, Adams KN, Miller SI, Hinnebusch BJ (2006) Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation. J Bacteriol 188:1381–1388CrossRefGoogle Scholar
  28. Saita E, Abriata LA, Tsai YT, Trajtenberg F, Lemmin T, Buschiazzo A, Dal Peraro M, de Mendoza D, Albanesi D (2015) A coiled coil switch mediates cold sensing by the thermosensory protein DesK. Mol Microbiol 98:258–271CrossRefGoogle Scholar
  29. Saita E, Albanesi D, de Mendoza D (2016) Sensing membrane thickness: lessons learned from cold stress. Biochim Biophys Acta 1861:837–846CrossRefGoogle Scholar
  30. Shimura Y, Shiraiwa Y, Suzuki I (2012) Characterization of the subdomains in the N-terminal region of histidine kinase Hik33 in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 53:1255–1266CrossRefGoogle Scholar
  31. Sinetova MA, Los DA (2016) New insights in cyanobacterial cold stress responses: Genes, sensors, and molecular triggers. Biochim Biophys Acta 1860:2391–2403CrossRefGoogle Scholar
  32. Singh AK, Zhang YM, Zhu K, Subramanian C, Li Z, Jayaswal RK, Gatto C, Rock CO, Wilkinson BJ (2009) FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in Listeria monocytogenes. FEMS Microbiol Lett 301:188–192CrossRefGoogle Scholar
  33. Small DM (1986) General properties of lipids conferred by the aliphatic chain. In: Hanahan DJ (ed) The physical chemistry of lipids, Handbook of lipid research, vol 4. Plenum, New York, pp 21–42CrossRefGoogle Scholar
  34. Wollenweber HW, Schlecht S, Lüderitz O, Rietschel ET (1983) Fatty acid in lipopolysaccharides of Salmonella species grown at low temperature. Identification and position. Eur J Biochem 130:167–171CrossRefGoogle Scholar
  35. Zhang Y-M, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233CrossRefGoogle Scholar
  36. Zhu K, Bayles DO, Xiong A, Jayaswal RK, Wilkinson BJ (2005) Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain-keto acid dehydrogenase. Microbiology 151:615–623CrossRefGoogle Scholar
  37. Zhu K, Choi KH, Schweizer HP, Rock CO, Zhang YM (2006) Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol Microbiol 60:260–273CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Microbiología, Facultad de Ciencias Bioquímicas y FarmacéuticasInstituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de RosarioRosarioArgentina
  2. 2.Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de RosarioRosarioArgentina

Personalised recommendations