Advertisement

Membrane-Disrupting Proteins

  • Jeremy H. LakeyEmail author
  • Gregor Anderluh
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

The cell membrane is vulnerable to attack from various external toxins and environmental threats. The ability to damage membranes of target cells has evolved across biology as a way to procure food and defend against disease or attack from other species. The membrane disruption is mostly carried out by proteins, and, although they originate from across the full spectrum of biological diversity, they share common mechanisms at the molecular level. This chapter uses specific examples to show how the secondary structure of proteins determines the various modes of action and how, starting from simple physicochemical interactions, specific molecular recognition has arisen to increase the effectiveness of the toxins.

References

  1. Anderluh G, Lakey JH (2008) Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 33(10):482–490CrossRefGoogle Scholar
  2. Bakrac B, Gutierrez-Aguirre I, Podlesek Z, Sonnen AFP, Gilbert RJC, Macek P, Lakey JH, Anderluh G (2008) Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J Biol Chem 283(27):18665–18677CrossRefGoogle Scholar
  3. Bechinger B (2004) Structure and function of membrane-lytic peptides. Crit Rev Plant Sci 23(3):271–292CrossRefGoogle Scholar
  4. Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758(9):1529–1539CrossRefGoogle Scholar
  5. Ehrlich P (1913) Address in pathology chemotherapeutics: scientific principle, methods and results. Lancet 182(4694):445–451CrossRefGoogle Scholar
  6. Gilbert RJC, Serra MD, Froelich CJ, Wallace MI, Anderluh G (2014) Membrane pore formation at protein-lipid interfaces. Trends Biochem Sci 39(11):510–516CrossRefGoogle Scholar
  7. Hong Q, Gutierrez-Aguirre I, Barlic A, Malovrh P, Kristan K, Podlesek V, Macek P, Gonzalez-Mañas J-M, Lakey JH, Anderluh G (2002) Two-step membrane binding by equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J Biol Chem 277(44):41916–41924CrossRefGoogle Scholar
  8. Iacovache I, van der Goot FG, Pernot L (2008) Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778(7–8):1611–1623CrossRefGoogle Scholar
  9. Johnson CL, Ridley H, Marchetti R, Silipo A, Griffin DC, Crawford L, Bonev B, Molinaro A, Lakey JH (2014) The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein. Mol Microbiol 92(3):440–452CrossRefGoogle Scholar
  10. Kolter T, Winau F, Schaible UE, Leippe M, Sandhoff K (2005) Lipid-binding proteins in membrane digestion, antigen presentation, and antimicrobial defense. J Biol Chem 280(50):41125–41128CrossRefGoogle Scholar
  11. Lakey JH, Parker MW, Gonzalez Manas JM, Duche D, Vriend G, Baty D, Pattus F (1994a) The role of electrostatic charge in the membrane insertion of colicin A: calculation and mutation. Eur J Biochem 220:155–163CrossRefGoogle Scholar
  12. Lakey JH, van der Goot FG, Pattus F (1994b) All in the family: the toxic activity of colicins. Toxicology 87:85–108CrossRefGoogle Scholar
  13. Openshaw AEA, Race PR, Monzo HJ, Vazquez-Boland JA, Banfield MJ (2005) Crystal structure of SmcL, a bacterial neutral sphingomyelinase C from Listeria. J Biol Chem 280(41):35011–35017CrossRefGoogle Scholar
  14. Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27(4–5):189–223CrossRefGoogle Scholar
  15. Weber DK, Yao S, Rojko N, Anderluh G, Lybrand TP, Downton MT, Wagner J, Separovic F (2015) Characterization of the lipid-binding site of equinatoxin II by NMR and molecular dynamics simulation. Biophys J 108(8):1987–1996CrossRefGoogle Scholar
  16. Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3(10):842–848CrossRefGoogle Scholar
  17. Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37(42):14713–14718CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
  2. 2.Laboratory for Molecular Biology and NanobiotechnologyNational Institute of ChemistryLjubljanaSlovenia

Personalised recommendations