Advertisement

Modeling Lipid Membranes

  • Pouyan Khakbaz
  • Viviana Monje-Galvan
  • Xiaohong Zhuang
  • Jeffery B. KlaudaEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Molecular modeling of lipid membranes has been an evolving field over the last 40 years. This chapter provides a brief historical background of simulations and provides an introductory overview of computational membrane modeling at the molecular level. The development of lipid force fields (FFs) at various levels (atomistic to coarse grained) has allowed for accurate descriptions of membrane properties. The current diversity in lipids available in FFs currently allows researchers to model representative membrane models across the biota spectrum. Modeling is not limited to lipids, and many functional studies of cellular membranes focus on membrane-associated proteins that reside in or interact with the surface of the membrane. The field of molecular membrane modeling is in an exciting stage to grow and investigate a wide array of biological phenomena.

Notes

Acknowledgments

Some of the research presented here and time spent on writing this work was supported by the NSF grant MCB-1149187.

References

  1. Akabori K, Nagle JF (2015) Structure of the DMPC lipid bilayer ripple phase. Soft Matter 11:918–926PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Clarendon Press, OxfordGoogle Scholar
  3. Ando J, Kinoshita M, Cui J, Yamakoshi H, Dodo K, Fujita K, Murata M, Sodeoka M (2015) Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy. Proc Natl Acad Sci 112:4558–4563PubMedCrossRefGoogle Scholar
  4. Balijepalli A, Robertson JW, Reiner JE, Kasianowicz JJ, Pastor RW (2013) Theory of polymer-nanopore interactions refined using molecular dynamics simulations. J Am Chem Soc 135:7064–7072PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barton R, Khakbaz P, Bera I, Klauda JB, Iovine MK, Berger BW (2016) Interplay of specific trans- and juxtamembrane interfaces in plexin A3 dimerization and signal transduction. Biochemistry 55:4928–4938PubMedCrossRefGoogle Scholar
  6. Chandrasekhar I, Kastenholz M, Lins RD, Oostenbrink C, Schuler LD, Tieleman DP, van Gunsteren WF (2003) A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J Biophys Lett 32:67–77Google Scholar
  7. Chowdhary J, Harder E, Lopes PEM, Huang L, MacKerell AD, Roux B (2013) A polarizable force field of dipalmitoylphosphatidylcholine based on the classical drude model for molecular dynamics simulations of lipids. J Phys Chem B 117:9142–9160PubMedPubMedCentralCrossRefGoogle Scholar
  8. Dickey AN, Yim W-S, Faller R (2009) Using ergosterol to mitigate the deleterious effects of ethanol on bilayer structure. J Phys Chem B 113:2388–2397PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dickson CJ, Madej BD, Skjevik ÅA, Betz RM, Teigen K, Gould IR, Walker RC (2014) Lipid14: the amber lipid force field. J Chem Theory Comput 10:865–879PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32PubMedPubMedCentralCrossRefGoogle Scholar
  11. Edholm O, Nagle JF (2005) Areas of molecules in membranes consisting of mixtures. Biophys J 89:1827–1832PubMedPubMedCentralCrossRefGoogle Scholar
  12. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580PubMedCrossRefGoogle Scholar
  13. Essmann U, Perera L, Berkowitz ML (1995) The origin of the hydration interaction of lipid bilayers from MD simulation of dipalmitoylphosphatidylcholine membranes in gel and liquid crystalline phases. Langmuir 11:4519–4531CrossRefGoogle Scholar
  14. Feigenson GW (2009) Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures. Biochim Biophys Acta Biomembr 1788:47–52CrossRefGoogle Scholar
  15. Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opin Colloid Interface Sci 5:217–223CrossRefGoogle Scholar
  16. Feller SE, MacKerell AD Jr (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515CrossRefGoogle Scholar
  17. Frenkel D, Smit B (2002) Understanding molecular simulations: from algorithms to applications. Academic, San DiegoGoogle Scholar
  18. Gawrisch K, Eldho NV, Polozov IV (2002) Novel NMR tools to study structure and dynamics of biomembranes. Chem Phys Lipids 116:135–151PubMedCrossRefGoogle Scholar
  19. Guros NB, Klauda JB (2016) Characterizing nanopore-polymer interactions and cys-loop protein receptor gating. Biophys J 110:630a–631aCrossRefGoogle Scholar
  20. Han W, Schulten K (2012) Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: improved backbone hydration and interactions between charged side chains. J Chem Theory Comput 8:4413–4424PubMedPubMedCentralCrossRefGoogle Scholar
  21. Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 80:2966–2972PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hénin J, Fiorin G, Chipot C, Klein ML (2010) Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J Chem Theory Comput 6:35–47PubMedCrossRefGoogle Scholar
  23. Huang K, García AE (2014) Acceleration of lateral equilibration in mixed lipid bilayers using replica exchange with solute tempering. J Chem Theory Comput 10:4264–4272PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ingólfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, de Vries AH, Tieleman DP, Marrink SJ (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136:14554–14559PubMedCrossRefGoogle Scholar
  25. Ishiyama T, Terada D, Morita A (2016) Hydrogen-bonding structure at zwitterionic lipid/water interface. J Phys Chem Lett 7:216–220PubMedCrossRefGoogle Scholar
  26. Jämbeck JPM, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8:2938–2948PubMedCrossRefGoogle Scholar
  27. Jämbeck JPM, Lyubartsev AP (2013) Another piece of the membrane puzzle: extending slipids further. J Chem Theory Comput 9:774–784PubMedCrossRefGoogle Scholar
  28. Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2:e880PubMedPubMedCentralCrossRefGoogle Scholar
  29. Khakbaz P, Klauda JB (2015) Probing the importance of lipid diversity in cell membranes via molecular simulation. Chem Phys Lipids 192:12–22PubMedCrossRefGoogle Scholar
  30. Khakbaz P, Klauda J (2016) Probing the ripple phase of lipid bilayers using molecular simulations. Biophys J 110:86aCrossRefGoogle Scholar
  31. Klauda JB, Brooks BR, MacKerell AD Jr, Venable RM, Pastor RW (2005) An Ab Initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J Phys Chem B 109:5300–5311PubMedCrossRefGoogle Scholar
  32. Klauda JB, Kučerka N, Brooks BR, Pastor RW, Nagle JF (2006) Simulation-based methods for interpreting X-ray data from lipid bilayers. Biophys J 90:2796–2807PubMedPubMedCentralCrossRefGoogle Scholar
  33. Klauda JB, Eldho NV, Gawrisch K, Brooks BR, Pastor RW (2008a) Collective and noncollective models of NMR relaxation in lipid vesicles and multilayers. J Phys Chem B 112:5924–5929PubMedCrossRefGoogle Scholar
  34. Klauda JB, Pastor RW, Brooks BR, Roberts MF, Redfield AG (2008b) Rotation of lipids in membranes: MD simulation, 31P spin-lattice relaxation, and rigid-body dynamics. Biophys J 94:3074–3083PubMedPubMedCentralCrossRefGoogle Scholar
  35. Klauda JB, Venable RM, MacKerell AD, Pastor RW (2008c) Considerations for lipid force field development. In: Scott EF (ed) Computational modeling of membrane bilayers. Elsevier, London, pp 1–48Google Scholar
  36. Klauda JB, Venable RM, Freites JA, O’Connor JW, Mondragon-Ramirez C, Vorobyov I, Tobias DJ, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843PubMedPubMedCentralCrossRefGoogle Scholar
  37. Klauda JB, Monje V, Kim T, Im W (2012) Improving the CHARMM force field for polyunsaturated fatty acid chains. J Phys Chem B 116:9424–9431PubMedCrossRefGoogle Scholar
  38. Konas RM, Daristotle JL, Harbor NB, Klauda JB (2015) Biophysical changes of lipid membranes in the presence of ethanol at varying concentrations. J Phys Chem B 119:13134–13141PubMedCrossRefGoogle Scholar
  39. Kong Y, Janssen BJ, Malinauskas T, Vangoor VR, Coles CH, Kaufmann R, Ni T, Gilbert RJ, Padilla-Parra S, Pasterkamp RJ, Jones EY (2016) Structural basis for plexin activation and regulation. Neuron 91:548–560PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lee S, Tran A, Allsopp M, Lim JB, Hénin J, Klauda JB (2014) CHARMM36 united-atom chain model for lipids and surfactants. J Phys Chem B 118:547–556PubMedCrossRefGoogle Scholar
  41. Leekumjorn S, Sum AK (2007) Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers. BBA-Biomembr 1768:354–365CrossRefGoogle Scholar
  42. Li Z, Venable RM, Rogers LA, Murray D, Pastor RW (2009) Molecular dynamics simulations of PIP2 and PIP3 in lipid bilayers: determination of ring orientation, and the effects of surface roughness on a Poisson-Boltzmann description. Biophys J 97:155–163PubMedPubMedCentralCrossRefGoogle Scholar
  43. Li J, Wen PC, Moradi M, Tajkhorshid E (2015) Computational characterization of structural dynamics underlying function in active membrane transporters. Curr Opin Struct Biol 31:96–105PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lim JB, Klauda JB (2011) Branching at the iso- and anteiso-positions in complex chlamydia membranes: a molecular dynamics study. Biochim Biophys Acta Biomembr 1808:323–331CrossRefGoogle Scholar
  45. Lim JB, Rogaski B, Klauda JB (2012) Update of the cholesterol force field parameters in CHARMM. J Phys Chem B 116:203–210PubMedCrossRefGoogle Scholar
  46. Liu P, Chernyshov A, Najdi T, Fu Y, Dickerson J, Sandmeyer S, Jarboe L (2013) Membrane stress caused by octanoic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:3239–3251PubMedCrossRefGoogle Scholar
  47. Lyubartsev AP, Rabinovich AL (2016) Force field development for lipid membrane simulations. Biochim Biophys Acta Biomembr 1858:2483–2497CrossRefGoogle Scholar
  48. Mannock DA, Lewis RNAH, McMullen TPW, McElhaney RN (2010) The effect of variations in phospholipid and sterol structure on the nature of lipid–sterol interactions in lipid bilayer model membranes. Chem Phys Lipids 163:403–448PubMedCrossRefGoogle Scholar
  49. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824PubMedCrossRefGoogle Scholar
  50. McIntosh TJ, Simon SA (1994) Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers. Biochemistry 33:10477–10486PubMedCrossRefGoogle Scholar
  51. Mojumdar EH, Gooris GS, Barlow DJ, Lawrence MJ, Deme B, Bouwstra JA (2015) Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys J 108:2670–2679PubMedPubMedCentralCrossRefGoogle Scholar
  52. Monje-Galvan V, Klauda JB (2015) Modelling yeast organelle membranes and how lipid diversity influences bilayer properties. Biochemistry 54:6852–6861PubMedCrossRefGoogle Scholar
  53. Monje-Galvan V, Klauda JB (2016) Peripheral membrane proteins: tying the knot between experiment and computation. Biochim Biophys Acta Biomembr 1858:1584–1593CrossRefGoogle Scholar
  54. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834PubMedCrossRefGoogle Scholar
  55. Mori T, Jung J, Sugita Y (2013) Surface-tension replica-exchange molecular dynamics method for enhanced sampling of biological membrane systems. J Chem Theory Comput 9:5629–5640PubMedCrossRefGoogle Scholar
  56. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta-Rev Biomembr 1469:159–195CrossRefGoogle Scholar
  57. O’Connor JW, Klauda JB (2011) Lipid membranes with a majority of cholesterol: applications to the ocular lens and aquaporin 0. J Phys Chem B 115:6455–6464PubMedCrossRefGoogle Scholar
  58. Ohkubo YZ, Pogorelov Taras V, Arcario Mark J, Christensen Geoff A, Tajkhorshid E (2012) Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J 102:2130–2139PubMedPubMedCentralCrossRefGoogle Scholar
  59. Pan J, Heberle FA, Petruzielo RS, Katsaras J (2013) Using small-angle neutron scattering to detect nanoscopic lipid domains. Chem Phys Lipids 170–171:19–32PubMedCrossRefGoogle Scholar
  60. Pandit KR, Klauda JB (2012) Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain. Biochim Biophys Acta Biomembr 1818:1205–1210CrossRefGoogle Scholar
  61. Pastor RW (1994) Molecular dynamics and Monte Carlo simulations of lipid bilayers. Curr Opin Struct Biol 4:486–492CrossRefGoogle Scholar
  62. Pendse PY, Brooks BR, Klauda JB (2010) Probing the periplasmic-open state of lactose permease in response to sugar binding and proton translocation. J Mol Biol 404:506–521PubMedPubMedCentralCrossRefGoogle Scholar
  63. Rahman A (1964) Correlations in the motion of atoms in liquid argon. Phys Rev 136:A405–A411CrossRefGoogle Scholar
  64. Riccardi D, Yang S, Cui Q (2010) Proton transfer function of carbonic anhydrase: insights from QM/MM simulations. Biochim Biophys Acta (BBA) – Proteins Proteomics 1804:342–351CrossRefGoogle Scholar
  65. Risselada HJ, Marrink SJ (2008) The molecular face of lipid rafts in model membranes. Proc Natl Acad Sci 105:17367–17372PubMedCrossRefGoogle Scholar
  66. Schuler LD, Daura X, Van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218CrossRefGoogle Scholar
  67. Shi Q, Voth GA (2005) Multi-scale modeling of phase separation in mixed lipid bilayers. Biophys J 89:2385–2394PubMedPubMedCentralCrossRefGoogle Scholar
  68. Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048PubMedCrossRefGoogle Scholar
  69. Shinoda W, DeVane R, Klein ML (2010) Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. J Phys Chem B 114:6836–6849PubMedPubMedCentralCrossRefGoogle Scholar
  70. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedCrossRefGoogle Scholar
  71. Snow CD, Sorin EJ, Rhee YM, Pande VS (2005) How well can simulation predict protein folding kinetics and thermodynamics? Annu Rev Biophys Biomol Struct 34:43–69PubMedCrossRefGoogle Scholar
  72. Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E (2014) The molecular structure of the liquid-ordered phase of lipid bilayers. J Am Chem Soc 136:725–732PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sodt AJ, Pastor RW, Lyman E (2015) Hexagonal substructure and hydrogen bonding in liquid-ordered phases containing palmitoyl sphingomyelin. Biophys J 109:948–955PubMedPubMedCentralCrossRefGoogle Scholar
  74. Stansfeld Phillip J, Sansom Mark SP (2011) Molecular simulation approaches to membrane proteins. Structure 19:1562–1572PubMedCrossRefGoogle Scholar
  75. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151CrossRefGoogle Scholar
  76. Sun R, Dama JF, Tan JS, Rose JP, Voth GA (2016) Transition-tempered metadynamics is a promising tool for studying the permeation of drug-like molecules through membranes. J Chem Theory Comput 12:5157–5169PubMedCrossRefGoogle Scholar
  77. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846CrossRefGoogle Scholar
  78. Terama E, Ollila OHS, Salonen E, Rowat AC, Trandum C, Westh P, Patra M, Karttunen M, Vattulainen I (2008) Influence of ethanol on lipid membranes: from lateral pressure profiles to dynamics and partitioning. J Phys Chem B 112:4131–4139PubMedCrossRefGoogle Scholar
  79. van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ (2015) Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim Biophys Acta Biomembr 1848:1319–1330CrossRefGoogle Scholar
  80. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124PubMedPubMedCentralCrossRefGoogle Scholar
  81. Venable RM, Zhang YH, Hardy BJ, Pastor RW (1993) Molecular-dynamics simulations of a lipid bilayer and of hexadecane – an investigation of membrane fluidity. Science 262:223–226PubMedCrossRefGoogle Scholar
  82. Venable RM, Brooks BR, Pastor RW (2000) Molecular dynamics simulations of gel (LβI) phase lipid bilayers in constant pressure and constant surface area ensembles. J Chem Phys 112:4822–4832CrossRefGoogle Scholar
  83. Venable RM, Sodt AJ, Rogaski B, Rui H, Hatcher E, MacKerell AD, Pastor RW, Klauda JB (2014) CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. Biophys J 107:134–145PubMedPubMedCentralCrossRefGoogle Scholar
  84. Villanueva DY, Lim JB, Klauda JB (2013) Influence of ester-modified lipids on bilayer structure. Langmuir 29:14196–14203PubMedCrossRefGoogle Scholar
  85. Wang Y, Markwick PRL, de Oliveira CAF, McCammon JA (2011) Enhanced lipid diffusion and mixing in accelerated molecular dynamics. J Chem Theory Comput 7:3199–3207PubMedPubMedCentralCrossRefGoogle Scholar
  86. Wong-ekkabut J, Xu Z, Triampo W, Tang IM, Peter Tieleman D, Monticelli L (2007) Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 93:4225–4236PubMedPubMedCentralCrossRefGoogle Scholar
  87. Wu Emilia L, Engström O, Jo S, Stuhlsatz D, Yeom Min S, Klauda Jeffery B, Widmalm G, Im W (2013) Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. Biophys J 105:1444–1455PubMedPubMedCentralCrossRefGoogle Scholar
  88. Wu Emilia L, Fleming Patrick J, Yeom Min S, Widmalm G, Klauda Jeffery B, Fleming Karen G, Im W (2014) E. coli outer membrane and interactions with OmpLA. Biophys J 106:2493–2502PubMedPubMedCentralCrossRefGoogle Scholar
  89. Wu EL, Cheng X, Jo S, Rui H, Song KC, Lee J, Davila-Contreras EM, Beaven AH, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004PubMedPubMedCentralCrossRefGoogle Scholar
  90. Yasuda T, Kinoshita M, Murata M, Matsumori N (2014) Detailed comparison of deuterium quadrupole profiles between sphingomyelin and phosphatidylcholine bilayers. Biophys J 106:631–638PubMedPubMedCentralCrossRefGoogle Scholar
  91. Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972PubMedCrossRefGoogle Scholar
  92. Zhang L, Polyansky A, Buck M (2015) Modeling transmembrane domain dimers/trimers of plexin receptors: implications for mechanisms of signal transmission across the membrane. PLoS One 10:e0121513PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pouyan Khakbaz
    • 1
  • Viviana Monje-Galvan
    • 1
  • Xiaohong Zhuang
    • 1
  • Jeffery B. Klauda
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.Biophysics ProgramUniversity of MarylandCollege ParkUSA

Personalised recommendations