Advertisement

Outer Membrane Vesicles of Bacteria: Structure, Biogenesis, and Function

  • Armaity NasarabadiEmail author
  • James E. Berleman
  • Manfred Auer
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Extracellular membrane vesicles (EMVs), a characteristic present across each domain of life, are subcellular shuttles of biologically active cargo that have a variety of functions ranging from cell-to-cell communication to predatory behavior. Mechanism(s) governing EMV biogenesis remain elusive; however, several initiators have been determined such as stress stimuli, sensing a potential prey or intruder, and signaling molecules. Regardless of function, increased membrane curvature and bulging is a key characteristic that leads to budding and release. This chapter highlights the differences between biogenesis processes of the bacteria, archaea and eukarya. We then focus on the outer membrane vesicles (OMVs) specific to Gram-negative bacteria, including several mechanism(s) that potentially explain how the loss of crucial OM-peptidoglycan (PGN) and OM-PGN-inner membrane (IM) interactions can destabilize the OM to result in OMV biogenesis. Despite gaps present in the current understanding of these novel organelles, OMVs are one mechanism that allow microbial cells to function as multicellular organisms, as pathogens, and act as key predators in their environment. We discuss the importance in better understanding OMV biogenesis for greater insight into how this form of membrane architecture can be utilized for vaccines and targeted/specific treatments for infections.

References

  1. Acevedo R, Fernández S, Zayas C et al (2014) Bacterial outer membrane vesicles and vaccine applications. Front Immunol 5:121.  https://doi.org/10.3389/fimmu.2014.00121CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baumgarten T, Sperling S, Seifert J et al (2012) Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 78(17):6217–6224.  https://doi.org/10.1128/AEM.01525-12CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berleman J, Auer M (2013) The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ Microbiol 15(2):347–354.  https://doi.org/10.1111/1462-2920.12048CrossRefPubMedGoogle Scholar
  4. Berleman JE, Allen S, Danielewicz MA et al (2014) The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front Microbiol 5:1–11.  https://doi.org/10.3389/fmicb.2014.00474CrossRefGoogle Scholar
  5. Bishop DG, Work E (1965) An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Biochem J 96(2):567–576.  https://doi.org/10.1042/bj0960567CrossRefPubMedPubMedCentralGoogle Scholar
  6. Deatherage BL, Cooksona BT (2012) Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 80(6):1948–1957.  https://doi.org/10.1128/IAI.06014-11CrossRefPubMedPubMedCentralGoogle Scholar
  7. Deatherage BL, Lara JC, Bergsbaken T, Barrett SLR, Lara S, Cookson BT (2009) Biogenesis of bacterial membrane vesicles. Mol Microbiol 72(6):1395–1407.  https://doi.org/10.1111/j.1365-2958.2009.06731.x.BiogenesisCrossRefPubMedPubMedCentralGoogle Scholar
  8. De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S (2016) Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 1:16107.  https://doi.org/10.1038/nmicrobiol.2016.107CrossRefPubMedGoogle Scholar
  9. Ellen AF, Albers SV, Huibers W et al (2008) Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13(1):67–79.  https://doi.org/10.1007/s00792-008-0199-xCrossRefPubMedGoogle Scholar
  10. Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74(1):81–94.  https://doi.org/10.1128/mmbr.00031-09CrossRefPubMedPubMedCentralGoogle Scholar
  11. Evans A, Davey H, Cookson A, Currinn H, Cooke-Fox G, Stanczyk P, Whitworth D (2012) Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 158(11):2742–2752.  https://doi.org/10.1099/mic.0.060343-0CrossRefPubMedGoogle Scholar
  12. Furuta N, Takeuchi H, Amano A (2009) Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. Infect Immun 77(11):4761–4770.  https://doi.org/10.1128/IAI.00841-09CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hoekstra D, van der Laan JW, de Leij L, Witholt B (1976) Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta 455:889–899CrossRefGoogle Scholar
  14. Hunt S, Green J, Artymiuk P (2010) Hemolysin E (HlyE, ClyA, SheA) and related toxins. Adv Exp Med Biol 677:116–126CrossRefGoogle Scholar
  15. Jin JS, Kwon S-O, Moon DC et al (2011) Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS One 6(2):e17027.  https://doi.org/10.1371/journal.pone.0017027CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177(14):3998–4008CrossRefGoogle Scholar
  17. Kadurugamuwa JL, Beveridge TJ (1996) Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178(10):2767–2774CrossRefGoogle Scholar
  18. Kato S, Kowashi Y, Demuth DR (2001) Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog 32(1):1–13.  https://doi.org/10.1006/mpat.2001.0474CrossRefGoogle Scholar
  19. Katsui N, Tsuchido T, Hiramatsu R, Fujikawa S, Takano M, Shibasaki I (1982) Heat-induced blebbing and vesiculation of the outer membrane of Escherichia coli. J Bacteriol 151(3):1523–1531PubMedPubMedCentralGoogle Scholar
  20. Keane R, Berleman J (2016) The predatory life cycle of Myxococcus xanthus. Microbiology 162(1):1–11.  https://doi.org/10.1099/mic.0.000208CrossRefPubMedGoogle Scholar
  21. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107(2):102–108.  https://doi.org/10.1016/j.imlet.2006.09.005CrossRefGoogle Scholar
  22. Knox KW, Vesk M, Work E (1966) Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J Bacteriol 92(4):1206–1217PubMedPubMedCentralGoogle Scholar
  23. Kulkarni HM, Jagannadham MV (2014) Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology 160(2014):2109–2121.  https://doi.org/10.1099/mic.0.079400-0CrossRefPubMedGoogle Scholar
  24. Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol:163–184CrossRefGoogle Scholar
  25. Lee E, Choi D, Kim K, Cho Y (2008) Proteomics in Gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev 27:535–555CrossRefGoogle Scholar
  26. Lee E-Y, Choi D-Y, Kim D-K et al (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9(24):5425–5436.  https://doi.org/10.1002/pmic.200900338CrossRefPubMedGoogle Scholar
  27. Li Z, Clarke AJ, Beveridge TJ (1996) A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J Bacteriol 178(9):2479–2488. http://www.ncbi.nlm.nih.gov/pubmed/8626312CrossRefGoogle Scholar
  28. Li Z, Clarke AJ, Beveridge TJ (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180(20):5478–5483PubMedPubMedCentralGoogle Scholar
  29. Loeb MR, Kilner J (1979) Effect of growth medium on the relative polypeptide composition of cellular outer membrane and released outer membrane material in Escherichia coli. J Bacteriol 137(2):1031–1034PubMedPubMedCentralGoogle Scholar
  30. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437(7057):422–425.  https://doi.org/10.1038/nature03925CrossRefPubMedGoogle Scholar
  31. Mashburn-Warren L, McLean RJC, Whiteley M (2008a) Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6(3):214–219.  https://doi.org/10.1111/j.1472-4669.2008.00157.xCrossRefPubMedPubMedCentralGoogle Scholar
  32. Mashburn-Warren L, Howe J, Garidel P et al (2008b) Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 69(2):491–502CrossRefGoogle Scholar
  33. O’Donoghue EJ, Krachler AM (2016) Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol:1508–1517.  https://doi.org/10.1111/cmi.12655CrossRefGoogle Scholar
  34. Palsdottir H, Remis JP, Schaudinn C et al (2009) Three-dimensional macromolecular organization of cryofixed Myxococcus xanthus biofilms as revealed by electron microscopic tomography. J Bacteriol 191(7):2077–2082.  https://doi.org/10.1128/JB.01333-08CrossRefPubMedPubMedCentralGoogle Scholar
  35. Prangishvili D, Holz I, Stieger E, Nickell S, Kristjansson JK, Zillig W (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J Bacteriol 182(10):2985–2988.  https://doi.org/10.1128/JB.182.10.2985-2988.2000CrossRefPubMedPubMedCentralGoogle Scholar
  36. Remis JP, Wei D, Gorur A et al (2014) Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environ Microbiol 16(2):598–610.  https://doi.org/10.1111/1462-2920.12187CrossRefPubMedGoogle Scholar
  37. Rivera J, Cordero RJB, Nakouzi AS, Frases S, Nicola A, Casadevall A (2010) Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci U S A 107(44):19002–19007.  https://doi.org/10.1073/pnas.1008843107CrossRefPubMedPubMedCentralGoogle Scholar
  38. Roier S, Zingl FG, Cakar F et al (2016) A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat Commun 7:10515.  https://doi.org/10.1038/ncomms10515CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rompikuntal PK, Thay B, Khan M et al (2012) Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun 80(1):31–42.  https://doi.org/10.1128/IAI.06069-11CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schaber JA, Triffo WJ, Sang JS et al (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun 75(8):3715–3721.  https://doi.org/10.1128/IAI.00586-07.1CrossRefPubMedPubMedCentralGoogle Scholar
  41. Schertzer J, Whiteley M (2012) A bilayer-couple model of bacterial outer membrane vesicle. MBio 3(2):e00297–e00211.  https://doi.org/10.1128/mBio.00297-11.EditorCrossRefPubMedPubMedCentralGoogle Scholar
  42. Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13(10):605–619.  https://doi.org/10.1038/nrmicro3525CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wai SN, Lindmark B, Söderblom T et al (2003) Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115(1):25–35.  https://doi.org/10.1016/S0092-8674(03)00754-2CrossRefPubMedGoogle Scholar
  44. Wensink J, Witholt B (1981) Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur J Biochem 116:331–335CrossRefGoogle Scholar
  45. Work E, Knox KW, Vesk M (1966) The chemistry and electron microscopy of an extracellular lipopolysaccharide from Escherichia coli. Ann N Y Acad Sci 133:438–449.  https://doi.org/10.1111/j.1749-6632.1966.tb52382.xCrossRefPubMedGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  • Armaity Nasarabadi
    • 1
    Email author
  • James E. Berleman
    • 1
    • 2
  • Manfred Auer
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Saint Mary’s College of CaliforniaMoragaUSA

Personalised recommendations