Advertisement

Synthesis of Acetyl-CoA from Carbon Dioxide in Acetogenic Bacteria

  • A. Wiechmann
  • V. MüllerEmail author
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Bacterial species, which are able to fix CO2 + H2 as only carbon and energy source to acetyl-CoA and further to acetate, are called acetogens. The pathway acetogenic bacteria possess is the linear, two-branched reductive acetyl-CoA pathway (Wood-Ljungdahl pathway), which they not only use to fix CO2 + H2 and/or CO to acetyl-CoA and further to acetate but also for redox balancing when growing on other carbon substrates. Reduction of CO2 to acetate does not leave acetogens with any additional energy in form of ATP for their anabolism. In order to overcome these energetic constraints, acetogens possess additional membrane complexes which couple the electron transfer from reduced ferredoxin to H+ or NAD+ to a proton or sodium ion gradient across the membrane, which in turn can be used by a proton- or sodium ion-dependent ATP synthase for energy conservation. Since acetogens are able to live autotrophically by using H2 + CO2, they are considered to be valuable tools for the fixation of greenhouse gases. Genetic modifications together with fermentative studies have converted these living artists to strong work horses for production of biofuels and synthetic compounds that help to prevent further global warming and the exploitation of our planet’s fossil fuels.

Notes

Acknowledgments

The work of the authors’ laboratory is supported by grants from the Deutsche Forschungsgemeinschaft and the Federal Ministry of Education and Research.

References

  1. Abrini J, Naveau H, Nyns E-J (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351CrossRefGoogle Scholar
  2. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 25:175–243CrossRefGoogle Scholar
  3. Barquera B (2014) The sodium pumping NADH:quinone oxidoreductase (Na+-Nqr), a unique redox-driven ion pump. J Bioenerg Biomembr 46:289–298CrossRefGoogle Scholar
  4. Basen M, Müller V (2016) “Hot” acetogenesis. Extremophiles 21:15–26CrossRefGoogle Scholar
  5. Basen M, Schut GJ, Nguyen DM, Lipscomb GL, Benn RA, Prybol CJ, Vaccaro BJ, Poole FL, Kelly RM, Adams MWW (2014) Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proc Natl Acad Sci USA 111:17618–17623CrossRefGoogle Scholar
  6. Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci USA 112:14518–14521CrossRefGoogle Scholar
  7. Bertsch J, Müller V (2015a) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8:210CrossRefGoogle Scholar
  8. Bertsch J, Müller V (2015b) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol 81:5949–5956CrossRefGoogle Scholar
  9. Bertsch J, Öppinger C, Hess V, Langer JD, Müller V (2015) Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii. J Bacteriol 197:1681–1689CrossRefGoogle Scholar
  10. Biegel E, Müller V (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci USA 107:18138–18142CrossRefGoogle Scholar
  11. Biegel E, Schmidt S, Müller V (2009) Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 11:1438–1443CrossRefGoogle Scholar
  12. Biegel E, Schmidt S, Gonzalez JM, Müller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68:613–634CrossRefGoogle Scholar
  13. Brandt K, Müller V (2015) Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance. Biol Chem 396:1031–1042CrossRefGoogle Scholar
  14. Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293CrossRefGoogle Scholar
  15. Cotter JL, Chinn MS, Grunden AM (2009) Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzym Microb Technol 44:281–288CrossRefGoogle Scholar
  16. Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471CrossRefGoogle Scholar
  17. Das A, Ljungdahl LG (1997) Composition and primary structure of the F1F0 ATP synthase from the obligately anaerobic bacterium Clostridium thermoaceticum. J Bacteriol 179:3746–3755CrossRefGoogle Scholar
  18. Diender M, Stams AJ, Sousa DZ (2016) Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas. Biotechnol Biofuels 9:82CrossRefGoogle Scholar
  19. Drake HL, Gossner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128CrossRefGoogle Scholar
  20. Fontaine FE, Peterson WH, Mccoy E, Johnson MJ, Ritter GJ (1942) A new type of glucose fermentation by Clostridium thermoaceticum nov. sp. J Bacteriol 43:701–715PubMedPubMedCentralGoogle Scholar
  21. Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, Van Vuuren DP, Le Quere C (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geosci 7:709–715CrossRefGoogle Scholar
  22. Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Lett 39:181–213CrossRefGoogle Scholar
  23. Furdui C, Ragsdale SW (2000) The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. J Biol Chem 275:28494–28499CrossRefGoogle Scholar
  24. Groher A, Weuster-Botz D (2016) Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. J Biotechnol 228:82–94CrossRefGoogle Scholar
  25. He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert SM, Wang F (2016) Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum bathyarchaeota widespread in marine sediments. Nat Microbiol 1:16035CrossRefGoogle Scholar
  26. Hedderich R, Forzi L (2005) Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 10:92–104CrossRefGoogle Scholar
  27. Hess V, Schuchmann K, Müller V (2013) The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 288:31496–32502CrossRefGoogle Scholar
  28. Hess V, Poehlein A, Weghoff MC, Daniel R, Müller V (2014) A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genomics 15:1139CrossRefGoogle Scholar
  29. Hess V, Gallegos R, Jones JA, Barquera B, Malamy MH, Müller V (2016) Occurrence of ferredoxin:NAD(+) oxidoreductase activity and its ion specificity in several Gram-positive and Gram-negative bacteria. PeerJ 4:e1515CrossRefGoogle Scholar
  30. Hoffmeister S, Gerdom M, Bengelsdorf FR, Linder S, Fluchter S, Ozturk H, Blumke W, May A, Fischer RJ, Bahl H, Dürre P (2016) Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng 36:37–47CrossRefGoogle Scholar
  31. Hreha TN, Mezic KG, Herce HD, Duffy EB, Bourges A, Pryshchep S, Juarez O, Barquera B (2015) Complete topology of the Rnf complex from Vibrio cholerae. Biochemistry 54:2443–2455CrossRefGoogle Scholar
  32. Huang H, Wang S, Moll J, Thauer RK (2012) Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J Bacteriol 194:3689–3699CrossRefGoogle Scholar
  33. Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, Jiang W, Gu Y (2016) CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol. (in press).  https://doi.org/10.1021/acssynbio.6b00044CrossRefGoogle Scholar
  34. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524PubMedPubMedCentralGoogle Scholar
  35. Kamlage B, Gruhl B, Blaut M (1997) Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides. Appl Environ Microbiol 63:1732–1738PubMedPubMedCentralGoogle Scholar
  36. Kaneuchi C, Benno Y, Mitsuoka T (1976) Clostridium coccoides, a new species from the feces of mice. Int J Syst Evol Microbiol 26:482–486Google Scholar
  37. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092CrossRefGoogle Scholar
  38. Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77:5467–5475CrossRefGoogle Scholar
  39. Li LF, Ljungdahl L, Wood HG (1966) Properties of nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum. J Bacteriol 92:405–412PubMedPubMedCentralGoogle Scholar
  40. Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M (2016) Gas fermentation-a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694CrossRefGoogle Scholar
  41. Ljungdahl L, Wood H (1969) Total synthesis of acetate from co2 by heterotrophic bacteria. Annu Rev Microbiol 23:515–538CrossRefGoogle Scholar
  42. Martin WF, Sousa FL (2016) Early microbial evolution: the age of anaerobes. Cold Spring Harb Perspect Biol 8:a018127CrossRefGoogle Scholar
  43. Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Micro 6:805–814CrossRefGoogle Scholar
  44. Matthies D, Zhou W, Klyszejko AL, Anselmi C, Yildiz Ö, Brandt K, Müller V, Faraldo-Gómez JD, Meier T (2014) High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+-coupled ATP synthase. Nat Commun 5:5286CrossRefGoogle Scholar
  45. Minton NP, Ehsaan M, Humphreys CM, Little GT, Baker J, Henstra AM, Liew F, Kelly ML, Sheng L, Schwarz K, Zhang Y (2016) A roadmap for gene system development in Clostridium. Anaerobe 41:104–112CrossRefGoogle Scholar
  46. Mock J, Wang S, Huang H, Kahnt J, Thauer RK (2014) Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J Bacteriol 196:3303–3314CrossRefGoogle Scholar
  47. Mock J, Zheng Y, Müller AP, Ly S, Tran L, Segovia S, Nagaraju S, Köpke M, Dürre P, Thauer RK (2015) Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol 197:2965–2980CrossRefGoogle Scholar
  48. Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353CrossRefGoogle Scholar
  49. Müller V, Aufurth S, Rahlfs S (2001) The Na+ cycle in Acetobacterium woodii: Identification and characterization of a Na+ translocating F1F0-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim Biophys Acta 1505:108–120CrossRefGoogle Scholar
  50. O’Brien WE, Brewer JM, Ljungdahl LG (1973) Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem 248:403–408PubMedGoogle Scholar
  51. Poehlein A, Schmidt S, Kaster A-K, Goenrich M, Vollmers J, Thürmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Müller V (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS ONE 7:e33439CrossRefGoogle Scholar
  52. Ragsdale SW (2003) Pyruvate:ferredoxin oxidoreductase and its radical intermediate. Chem Rev 103:2333–2346CrossRefGoogle Scholar
  53. Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136CrossRefGoogle Scholar
  54. Schlegel K, Welte C, Deppenmeier U, Müller V (2012) Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. Febs J 279:4444–4452CrossRefGoogle Scholar
  55. Schuchmann K, Müller V (2012) A bacterial electron-bifurcating hydrogenase. J Biol Chem 287:31165–31171CrossRefGoogle Scholar
  56. Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342:1382–1385CrossRefGoogle Scholar
  57. Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12:809–821CrossRefGoogle Scholar
  58. Schuchmann K, Müller V (2016) Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 82:4056–4069CrossRefGoogle Scholar
  59. Sojo V, Herschy B, Whicher A, Camprubi E, Lane N (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16:181–197CrossRefGoogle Scholar
  60. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Evol Microbiol 43:232–236Google Scholar
  61. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedPubMedCentralGoogle Scholar
  62. Tremblay P-L, Zhang T, Dar SA, Leang C, Lovley DR (2013) The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 4:e00406Google Scholar
  63. Weghoff MC, Bertsch J, Müller V (2015) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17:670–677CrossRefGoogle Scholar
  64. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116.  https://doi.org/10.1038/nmicrobiol.2016.116CrossRefPubMedGoogle Scholar
  65. Wieringa KT (1936) Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden. Antonie van Leeuwenhoek 3:263–273CrossRefGoogle Scholar
  66. Wieringa KT (1939) The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie Leeuwenhoek J Microbiol Serol 6:251–262CrossRefGoogle Scholar
  67. Wood HG (1952) A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J Biol Chem 194:905–931PubMedGoogle Scholar
  68. Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Lett 39:345–362CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and Bioenergetics, Institute of Molecular BiosciencesJohann Wolfgang Goethe-University Frankfurt/MainFrankfurtGermany

Personalised recommendations