Advertisement

Wax Ester and Triacylglycerol Biosynthesis in Bacteria

  • H. M. AlvarezEmail author
  • M. A. Hernández
  • O. M. Herrero
  • M. P. Lanfranconi
  • R. A. Silva
  • M. S. Villalba
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Bacteria are an extremely diverse group of organisms, some of which possess the ability to synthesize and accumulate neutral lipids, such as triacylglycerols (TAG) and wax esters (WE). Among these microorganisms, Actinobacteria are specialized in the accumulation of TAG, whereas Gram-negative Proteobacteria, such as Acinetobacter and Marinobacter, produce predominantly WE. The capability for accumulating large amounts of TAG seems to be restricted to some members of Actinobacteria, such as those belonging to Rhodococcus, Gordonia, and Streptomyces genera, and to the Gram-negative Alcanivorax borkumensis. The biosynthesis and accumulation of TAG and/or WE require the occurrence of a set of genes/proteins working in a coordinated metabolic and regulatory context in the cell. Some components of the lipid-accumulating machinery in native producers have been identified and characterized. They include genes coding for: (1) enzymes catalyzing the last reactions of TAG and/or WE synthesis; (2) enzymes involved in the reduction of fatty acids to the respective fatty alcohols for the synthesis of WE; (3) enzymes of central metabolism which generate NADPH for fatty acid synthesis; (4) a structural protein involved in the assembly and stabilization of lipid inclusion bodies; and (5) a lipid transporter protein involved in the balance and homeostasis of cellular lipids. Some of these genes identified in native producers have been used for engineering bacterial hosts, which are naturally unable to produce these lipids, in order to produce TAG/WE with bacterial strains of biotechnological relevance.

References

  1. Alvarez AF, Alvarez HM, Kalscheuer R, Wältermann M, Steinbüchel A (2008) Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology 154:2327–2335CrossRefGoogle Scholar
  2. Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD (2016) Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Report 6:24985CrossRefGoogle Scholar
  3. Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582CrossRefGoogle Scholar
  4. Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H (2013) Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb Cell Factories 12:9CrossRefGoogle Scholar
  5. Comba S, Sabatini M, Menendez-Bravo S, Arabolaza A, Gramajo H (2014) Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production. Biotechnol Biofuels 7:172CrossRefGoogle Scholar
  6. Daniel J, Deb C, Dubey VS, Sirakova T, Abomoelak MHR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030CrossRefGoogle Scholar
  7. Daniel J, Sirakova T, Kolattukudy P (2014) An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy. PLoS One 9:e114877CrossRefGoogle Scholar
  8. Finkelstein DB, Brassell SC, Pratt LM (2010) Microbial biosynthesis of wax esters during desiccation: adaptation for colonization of the earliest terrestrial environments? Geology 38:247–250CrossRefGoogle Scholar
  9. Hernández MA, Arabolaza A, Rodríguez E, Gramajo H, Alvarez HM (2013) The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl Microbiol Biotechnol 97:2119CrossRefGoogle Scholar
  10. Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM (2015) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 99:2191CrossRefGoogle Scholar
  11. Herrero OM, Moncalián G, Alvarez HM (2016) Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production. Microbiology 162(2):384–397CrossRefGoogle Scholar
  12. Hetzler S, Steinbüchel A (2013) Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630. Appl Environ Microbiol 79(9):3122–3312CrossRefGoogle Scholar
  13. Hofvander P, Doan TT, Hamberg M (2011) A prokaryotic acyl-CoA reductase performing reduction of fatty acyl-CoA to fatty alcohol. FEBS Lett 585:3538–3543CrossRefGoogle Scholar
  14. Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach ALB, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7(9):e1002219CrossRefGoogle Scholar
  15. Holtzapple E, Schmidt-Dannert C (2007) Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J Bacteriol 189:3804–3812CrossRefGoogle Scholar
  16. Huang L, Zhao L, Zan X, Song Y, Ratledge C (2016) Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases. Biotechnol Lett 38(6):999–1008CrossRefGoogle Scholar
  17. Indest KJ, Eberly JO, Ringelberg DB, Hancock DE (2015) The effects of putative lipase and wax ester synthase/acyl-CoA: diacylglycerol acyltransferase gene knockouts on triacylglycerol accumulation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 42(2):219–227CrossRefGoogle Scholar
  18. Janßen HJ, Steinbüchel A (2014) Production of triacylglycerols in Escherichia coli by deletion of the diacylglycerol kinase gene and heterologous overexpression of atfA from Acinetobacter baylyi ADP1. Appl Microbiol Biotechnol 98(4):1913–1924CrossRefGoogle Scholar
  19. Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082CrossRefGoogle Scholar
  20. Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A (2006) Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 72(2):1373–1379CrossRefGoogle Scholar
  21. Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928CrossRefGoogle Scholar
  22. Kurosawa K, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6:134–147CrossRefGoogle Scholar
  23. Lenneman EM, Ohlert JM, Palani NP, Barney BM (2013) Fatty alcohols for wax esters in Marinobacter aquaeolei VT8: two optional routes in the wax biosynthesis pathway. Appl Environ Microbiol 79:7055–7062CrossRefGoogle Scholar
  24. Low KL, Shui G, Natter K, Yeo WK, Kohlwein SD, Dick T, Wenk MR (2010) Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guerin. J Biol Chem 285(28):21662–21670CrossRefGoogle Scholar
  25. MacEachran DP, Sinskey AJ (2013) The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. Microb Cell Factories 12:104CrossRefGoogle Scholar
  26. MacEachran DP, Prophete ME, Sinskey AJ (2010) The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. Appl Environ Microbiol 76:7217–7225CrossRefGoogle Scholar
  27. Plassmeier J, Li Y, Rueckert C, Sinskey AJ (2016) Metabolic engineering Corynebacterium glutamicum to produce triacylglycerols. Metab Eng 33:86–97CrossRefGoogle Scholar
  28. Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179:2969–2975CrossRefGoogle Scholar
  29. Rodriguez E, Navone L, Casati P, Gramajo H (2012) Impact of malic enzymes on antibiotic and triacylglycerol production in Streptomyces coelicolor. Appl Environ Microbiol 78(13):4571–4579CrossRefGoogle Scholar
  30. Rontani JF, Bonin PC, Volkman JK (1999) Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds. Appl Environ Microbiol 65:221–230PubMedPubMedCentralGoogle Scholar
  31. Röttig A, Zurek PJ, Steinbüchel A (2015) Assessment of bacterial acyltransferases for an efficient lipid production in metabolically engineered strains of E. coli. Metab Eng 32:195–206CrossRefGoogle Scholar
  32. Rucker J, Paul J, Pfeifer BA, Lee K (2013) Engineering E. coli for triglyceride accumulation through native and heterologous metabolic reactions. Appl Microbiol Biotechnol 97:2753–2759CrossRefGoogle Scholar
  33. Santala S, Efimova E, Koskinen P, Karp MT, Santala V (2014) Rewiring the wax ester production pathway of Acinetobacter baylyi ADP1. ACS Synth Biol 3(3):145–151CrossRefGoogle Scholar
  34. Shi S, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7CrossRefGoogle Scholar
  35. Sirakova TD, Deb C, Daniel J, Singh HD, Maamar H, Dubey VS, Kolattukudy PE (2012) Wax ester synthesis is required for Mycobacterium tuberculosis to enter in vitro dormancy. PLoS One 7(12):e51641CrossRefGoogle Scholar
  36. Sohlenkamp C, Geiger O (2015) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159CrossRefGoogle Scholar
  37. Villalba MS, Alvarez HM (2014) Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. Microbiology 160:1523–1532CrossRefGoogle Scholar
  38. Xiong XC, Wang X, Chen SL (2012) Engineering of a xylose metabolic pathway in Rhodococcus strains. Appl Environ Microbiol 78(16):5483–5491CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • H. M. Alvarez
    • 1
    Email author
  • M. A. Hernández
    • 1
  • O. M. Herrero
    • 1
    • 2
  • M. P. Lanfranconi
    • 1
  • R. A. Silva
    • 1
  • M. S. Villalba
    • 1
    • 2
  1. 1.Faculty of Natural Science, Bioscience Institute Patagonia (INBIOP)University of Patagonia San Juan Bosco, CONICETComodoro RivadaviaArgentina
  2. 2.Oil m&sComodoro RivadaviaArgentina

Personalised recommendations