Type III Polyketide Synthases Responsible for Phenolic Lipid Synthesis

  • Akimasa MiyanagaEmail author
  • Yasuo Ohnishi
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


In various microorganisms, phenolic lipids, consisting of a polar aromatic ring and a hydrophobic alkyl chain, are synthesized by type III polyketide synthases (PKSs). In Azotobacter vinelandii, two type III PKSs, ArsB and ArsC, are responsible for the biosynthesis of alkylresorcinols and alkylpyrones, respectively, which are the major lipids in the cyst membrane. In Streptomyces griseus, SrsA is involved in synthesizing alkylquinones, which confer resistance to β-lactam antibiotics. In Mycobacterium smegmatis, PKS10 is involved in the biosynthesis of alkylquinones, which are proposed to act as electron-shuttling molecules. The phenolic lipid-producing type III PKSs are distributed in a wide variety of Gram-positive and Gram-negative bacteria, some fungi, and plants. Thus, phenolic lipids produced by type III PKSs play important, but so far overlooked, roles as minor components in biological membranes and, more importantly, as mobile electron carriers in the respiratory electron transport chain in some bacteria.


  1. Anand A, Verma P, Singh AK, Kaushik S, Pandey R, Shi C, Kaur H, Chawla M, Elechalawar CK, Kumar D, Yang Y, Bhavesh NS, Banerjee R, Dash D, Singh A, Natarajan VT, Ojha AK, Aldrich CC, Gokhale RS (2015) Polyketide quinones are alternate intermediate electron carriers during Mycobacterial respiration in oxygen-deficient niches. Mol Cell 60:637–650CrossRefGoogle Scholar
  2. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110CrossRefGoogle Scholar
  3. Austin MB, Saito T, Bowman ME, Haydock S, Kato A, Moore BS, Kay RR, Noel JP (2006) Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nat Chem Biol 2:494–502CrossRefGoogle Scholar
  4. Awakawa T, Fujita N, Hayakawa M, Ohnishi Y, Horinouchi S (2011) Characterization of the biosynthesis gene cluster for alkyl-O-dihydrogeranyl-methoxyhydroquinones in Actinoplanes missouriensis. Chembiochem 12:439–448CrossRefGoogle Scholar
  5. Awakawa T, Sugai Y, Otsutomo K, Ren S, Masuda S, Katsuyama Y, Horinouchi S, Ohnishi Y (2013) 4-Hydroxy-3-methyl-6-(1-methyl-2-oxoalkyl)pyran-2-one synthesis by a type III polyketide synthase from Rhodospirillum centenum. Chembiochem 14:1006–1013CrossRefGoogle Scholar
  6. Baerson SR, Dayan FE, Rimando AM, Nanayakkara NP, Liu CJ, Schröder J, Fishbein M, Pan Z, Kagan IA, Pratt LH, Cordonnier-Pratt MM, Duke SO (2008) A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs. J Biol Chem 283:3231–3247CrossRefGoogle Scholar
  7. Bangera MG, Thomashow LS (1999) Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181:3155–3163PubMedPubMedCentralGoogle Scholar
  8. Cocotl-Yañez M, Sampieri A, Moreno S, Núñez C, Castañeda M, Segura D, Espín G (2011) Roles of RpoS and PsrA in cyst formation and alkylresorcinol synthesis in Azotobacter vinelandii. Microbiology 157:1685–1693CrossRefGoogle Scholar
  9. Cook D, Rimando AM, Clemente TE, Schröder J, Dayan FE, Nanayakkara NP, Pan Z, Noonan BP, Fishbein M, Abe I, Duke SO, Baerson SR (2010) Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone. Plant Cell 22:867–887CrossRefGoogle Scholar
  10. Funa N, Ohnishi Y, Fujii I, Shibuya M, Ebizuka Y, Horinouchi S (1999) A new pathway for polyketide synthesis in microorganisms. Nature 400:897–899CrossRefGoogle Scholar
  11. Funa N, Ozawa H, Hirata A, Horinouchi S (2006) Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci U S A 103:6356–6361CrossRefGoogle Scholar
  12. Funa N, Awakawa T, Horinouchi S (2007) Pentaketide resorcylic acid synthesis by type III polyketide synthase from Neurospora crassa. J Biol Chem 282:14476–14481CrossRefGoogle Scholar
  13. Funabashi M, Funa N, Horinouchi S (2008) Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus. J Biol Chem 283:13983–13991CrossRefGoogle Scholar
  14. Hayashi T, Kitamura Y, Funa N, Ohnishi Y, Horinouchi S (2011) Fatty acyl-AMP ligase involvement in the production of alkylresorcylic acid by a Myxococcus xanthus type III polyketide synthase. Chembiochem 12:2166–2176CrossRefGoogle Scholar
  15. Kozubek A, Tyman JH (1999) Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev 99:1–26CrossRefGoogle Scholar
  16. Lin LP, Sadoff HL (1968) Encystment and polymer production by Azotobacter vinelandii in the presence of beta-hydroxybutyrate. J Bacteriol 95:2336–2343PubMedPubMedCentralGoogle Scholar
  17. Matsuzawa M, Katsuyama Y, Funa N, Horinouchi S (2010) Alkylresorcylic acid synthesis by type III polyketide synthases from rice Oryza sativa. Phytochemistry 71:1059–1067CrossRefGoogle Scholar
  18. Miyanaga A, Horinouchi S (2009) Enzymatic synthesis of bis-5-alkylresorcinols by resorcinol-producing type III polyketide synthases. J Antibiot 62:371–376CrossRefGoogle Scholar
  19. Miyanaga A, Funa N, Awakawa T, Horinouchi S (2008) Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis. Proc Natl Acad Sci U S A 105:871–876CrossRefGoogle Scholar
  20. Muriel-Millán LF, Moreno S, Romero Y, Bedoya-Pérez LP, Castañeda M, Segura D, Espín G (2015) The unphosphorylated EIIA(Ntr) protein represses the synthesis of alkylresorcinols in Azotobacter vinelandii. PLoS One 10:e0117184CrossRefGoogle Scholar
  21. Nakano C, Ozawa H, Akanuma G, Funa N, Horinouchi S (2009) Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis. J Bacteriol 191:4916–4923CrossRefGoogle Scholar
  22. Nakano C, Funa N, Ohnishi Y, Horinouchi S (2012) The O-methyltransferase SrsB catalyzes the decarboxylative methylation of alkylresorcyclic acid during phenolic lipid biosynthesis by Streptomyces griseus. J Bacteriol 194:1544–1551CrossRefGoogle Scholar
  23. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060CrossRefGoogle Scholar
  24. Pfeifer V, Nicholson GJ, Ries J, Recktenwald J, Schefer AB, Shawky RM, Schröder J, Wohlleben W, Pelzer S (2001) A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine. J Biol Chem 276:38370–38377CrossRefGoogle Scholar
  25. Reusch RN, Sadoff HL (1983) Novel lipid components of the Azotobacter vinelandii cyst membrane. Nature 302:268–270CrossRefGoogle Scholar
  26. Romero Y, Moreno S, Guzmán J, Espín G, Segura D (2013) Sigma factor RpoS controls alkylresorcinol synthesis through ArpR, a LysR-type regulatory protein, during encystment of Azotobacter vinelandii. J Bacteriol 195:1834–1844CrossRefGoogle Scholar
  27. Romero Y, Guzmán J, Moreno S, Cocotl-Yañez M, Vences-Guzmán MÁ, Castañeda M, Espín G, Segura D (2016) The GacS/A-RsmA signal transduction pathway controls the synthesis of alkylresorcinol lipids that replace membrane phospholipids during encystment of Azotobacter vinelandii SW136. PLoS One 11:e0153266CrossRefGoogle Scholar
  28. Segura D, Vite O, Romero Y, Moreno S, Castañeda M, Espín G (2009) Isolation and characterization of Azotobacter vinelandii mutants impaired in alkylresorcinol synthesis: alkylresorcinols are not essential for cyst desiccation resistance. J Bacteriol 191:3142–3148CrossRefGoogle Scholar
  29. Stasiuk M, Kozubek A (2010) Biological activity of phenolic lipids. Cell Mol Life Sci 67:841–860CrossRefGoogle Scholar
  30. Ueda K, Kim KM, Beppu T, Horinouchi S (1995) Overexpression of a gene cluster encoding a chalcone synthase-like protein confers redbrown pigment production in Streptomyces griseus. J Antibiot 48:638–646CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of Biotechnology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations