Bacterial Sphingolipids and Sulfonolipids

  • Otto GeigerEmail author
  • Jonathan Padilla-Gómez
  • Isabel M. López-Lara
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The bacterial envelope is often composed by two membranes: the inner or cytoplasmic membrane and an outer membrane. The inner membrane consists of a lipid bilayer with phospholipids covering the inner and the outer leaflet. Although the outer membrane displays a bilayer structure as well, only the inner leaflet of the outer membrane is composed of phospholipids, whereas the outer leaflet is typically formed by lipid A-containing lipopolysaccharides in Gram-negative bacteria. However, some bacteria lack lipopolysaccharides and have sphingolipids in the outer leaflet of their outer membrane instead. Sphingolipids are considered to be typical eukaryotic membrane lipids, essential components of the plasma membrane, and are crucial for signaling and organization of lipid rafts in eukaryotes.

Although there is a considerable structural diversity within bacterial sphingolipids, very little is known about their biosynthesis, transport to the outer leaflet of the outer membrane, or their evolutionary history. Whereas bacterial sphingolipids seem to be important as an outermost protective layer in some bacteria, for the survival of symbiotic Bacteroides in humans, as virulence factors in some pathogenic bacteria, and maybe in fruiting body formation in myxobacteria, their biological functions are poorly understood on a molecular level.

Sulfonolipids are structural analogues of sphingolipids and seem to be important for gliding motility in Cytophaga species, but also as crucial bacterial factors that trigger multicellularity in choanoflagellates, the closest living relatives of animals.



Research in our lab was supported by grants from Consejo Nacional de Ciencia y Tecnología-México (CONACyT-Mexico) (178,359 and 253,549 in Investigación Científica Básica as well as 118 in Investigación en Fronteras de la Ciencia) and from Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México

(DGAPA-UNAM; PAPIIT IN202616, IN203612). We thank Lourdes Martínez-Aguilar for skillful technical assistance.


  1. Abbanat DR, Leadbetter ER, Godchaux W III, Escher A (1986) Sulphonolipids are molecular determinants of gliding motility. Nature 324:367–369CrossRefGoogle Scholar
  2. Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–511CrossRefGoogle Scholar
  3. Alegado RA, Brown LA, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, Clardy J, King N (2012) A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLIFE 1:e00013CrossRefGoogle Scholar
  4. An D, Na C, Bielawski J, Hannun YA, Kasper DL (2011) Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc Natl Acad Sci U S A 108:4666–4671CrossRefGoogle Scholar
  5. An D, Sungwhan F, Olszak T, Neves JF, Avci FY, Ertuk-Hasdemir D, Lu X, Zeissig S, Blumberg RS, Kasper DL (2014) Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156:123–133CrossRefGoogle Scholar
  6. Arendt T, Wolff H, Bode HB (2015) Neutral and phospholipids of the Myxococcus xanthus lipidome during fruiting body formation and germination. Appl Environ Microbiol 81:6538–6547CrossRefGoogle Scholar
  7. Astner I, Schulze JO, van den Heuvel J, Jahn D, Schubert WD, Heinz DW (2005) Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J 24:3166–3177CrossRefGoogle Scholar
  8. Christen B, Abeliuk E, Collier JM, Kalogerati VS, Passarelli B, Coller JA, Fero MJ, McAdams HH, Shapiro L (2011) The essential genome of a bacterium. Mol Syst Biol 7:528CrossRefGoogle Scholar
  9. Cochet F, Peri F (2017) The role of carbohydrates in the lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4) signalling. Int J Mol Sci 18:2318CrossRefGoogle Scholar
  10. Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M (2004) Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 70:6678–6685CrossRefGoogle Scholar
  11. Cowart LA, Obeid LM (2006) Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta 1771:421–431CrossRefGoogle Scholar
  12. Fischer H, Ellström P, Ekström K, Gustafsson M, Svanborg C (2007) Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4. Cell Microbiol 9:1239–1251CrossRefGoogle Scholar
  13. Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C (2010) Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 49:46–60CrossRefGoogle Scholar
  14. Godchaux IIIW, Leadbetter ER (1984) Sulfonolipids of gliding bacteria: structure of the N-acylaminosulfonates. J Biol Chem 259:2982–2990PubMedGoogle Scholar
  15. Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632:16–30CrossRefGoogle Scholar
  16. Heaver SL, Johnson EL, Ley RE (2018) Sphingolipids in host-microbial interactions. Curr Opin Microbiol 43:92–99CrossRefGoogle Scholar
  17. Hirabayashi Y, Furuya S (2008) Roles of L-serine and sphingolipid synthesis in brain development and neuronal survival. Prog Lipid Res 47:188–203CrossRefGoogle Scholar
  18. Ikushiro H, Hayashi H, Kagamiyama H (2001) A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain. Purification, characterization, cloning, and overproduction. J Biol Chem 276:18249–18256CrossRefGoogle Scholar
  19. Ikushiro H, Islam MM, Tojo H, Hayashi H (2007) Molecular characterization of membrane-associated soluble serine palmitoyltransferases from Sphingobacterium multivorum and Bdellovibrio stolpii. J Bacteriol 198:5749–5761CrossRefGoogle Scholar
  20. Jayasimhulu K, Hunt SM, Kaneshiro ES, Watanabe Y, Giner JL (2007) Detection and identification of Bacteriovorax stolpii UKi2 sphingophosphonolipid molecular species. J Am Soc Mass Spectrom 18:394–403CrossRefGoogle Scholar
  21. Jeong H, Kim HJ, Lee SJ (2015) Complete genome sequence of Escherichia coli BL21. Genome Announc 3:e00134–e00115PubMedPubMedCentralGoogle Scholar
  22. Kanzaki H, Movila A, Kayal R, Napimoga MH, Egashira K et al (2017) Phosphoglycerol dihydroceramide, a distinctive ceramide produced by Porphyromonas gingivalis, promotes RANKL-induced osteoclastogenesis by acting on non-muscle myosinII-A (Myh9), an osteoclast cell fusion regulatory factor. Biochim Biophys Acta 1862:452–462CrossRefGoogle Scholar
  23. Kato M, Muto Y, Tanaka-Bandoh K, Watanabe K, Ueno K (1995) Sphingolipid composition in Bacteroides species. Anaerobe 1:135–139CrossRefGoogle Scholar
  24. Kawahara K, Seydel U, Matsuura M, Danbara H, Rietschel ET, Zähringer U (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett 292:107–110CrossRefGoogle Scholar
  25. Kawahara K, Kubota M, Sato N, Tsuge K, Seto Y (2002) Occurrence of an α-galacturonosyl-ceramide in the dioxin-degrading bacterium Sphingomonas wittichii. FEMS Microbiol Lett 214:289–294PubMedGoogle Scholar
  26. Kawazaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K, Kawahara K (1994) The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol 176:284–290CrossRefGoogle Scholar
  27. Keck M, Gisch N, Moll H, Vorhölter FJ, Gerth K, Kahmann U, Lissel M, Lindner B, Niehaus K, Holst O (2011) Unusual outer membrane lipid composition of the gram-negative, lipopolysaccharide-lacking myxobacterium Sorangium cellulosum so ce56. J Biol Chem 286:12850–12859CrossRefGoogle Scholar
  28. Kerbarh O, Campopiano DJ, Baxter RL (2006) Mechanism of α-oxoamine synthases: identification of the intermediate Claisen product in the 8-amino-7-oxononanoate synthase reaction. Chem Commun 60–62Google Scholar
  29. Kihara A, Mitsutake S, Mizutani Y, Igarashi Y (2007) Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 46:126–144CrossRefGoogle Scholar
  30. Kinjo Y, Pei B, Bufali S, Raju R, Richardson SK, Imamura M, Fujio M, Wu D, Khurana A, Kawahara K, Wong CH, Howell AR, Seeberger PH, Kronenberg M (2008) Natural Sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells. Chem Biol 15:654–664CrossRefGoogle Scholar
  31. Lorenzen W, Bozküyü KAJ, Cortina NS, Bode HB (2014) A comprehensive insight into the lipid composition of Myxococcus xanthus by UPLC-ESI-MS. J Lipid Res 55:2620–2633CrossRefGoogle Scholar
  32. Mina JG, Thye JK, Alqaisi AQI, Bird LE, Dods RH et al (2017) Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites. J Biol Chem 292:12208–12219CrossRefGoogle Scholar
  33. Moye ZD, Valiuskyte K, Dewhirst FE, Nichols FC, Davey ME (2016) Synthesis of sphingolipids impacts survival of Porphyromonas gingivalis and the presentation of surface polysaccharides. Front Microbiol 7:1919CrossRefGoogle Scholar
  34. Naka T, Fujiwara N, Yano I, Maeda S, Doe M, Minamino M, Ikeda N, Kato Y, Watabe K, Kumazawa Y, Tomiyasu I, Kobayashi K (2003) Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium. Biochim Biophys Acta 1635:83–92CrossRefGoogle Scholar
  35. Nelson DL, Cox MM (2017) Lehninger – principles of biochemistry, 7th edn. WH Freeman and Company, New YorkGoogle Scholar
  36. Nichols FC, Yao X, Bajrami B, Downes J, Finagold SM, Knee E, Gallagher JJ, Housley WJ, Clark RB (2011) Phosphorylated dihydroceramides from common human bacteria are recovered in human tissues. PLoS One 6:e16771CrossRefGoogle Scholar
  37. Nieto FL, Pescio LG, Favale NO, Adamo AM, Sterin-Speziale NB (2008) Sphingolipid metabolism is a crucial determinant of cellular fate in non-stimulated proliferating Madin-Darby canine kidney (MDCK) cells. J Biol Chem 283:25682–25691CrossRefGoogle Scholar
  38. Ogawa S, Tachimoto H, Kaga T (2010) Elevation of ceramide in Acetobacter malorum S24 by low pH stress and high temperature stress. J Biosci Bioeng 109:32–36CrossRefGoogle Scholar
  39. Olsen I, Jantzen E (2001) Sphingolipids in bacteria and fungi. Anaerobe 7:103–112CrossRefGoogle Scholar
  40. Pitta TP, Leadbetter ER, Godchaux W III (1989) Increase of ornithine amino lipid content in a sulfonolipid-deficient mutant of Cytophaga johnsonae. J Bacteriol 171:952–957CrossRefGoogle Scholar
  41. Raetz CRH, Dowhan W (1990) Biosynthesis and function of phospholipids in Escherichia coli. J Biol Chem 265:1235–1238PubMedGoogle Scholar
  42. Raman MCC, Johnson KA, Clarke DJ, Naismith JH, Campopiano DJ (2010) The serine palmitoyltransferase from Sphingomonas wittichii RW1: an interesting link to an unusual acyl carrier protein. Biopolymers 93:811–822CrossRefGoogle Scholar
  43. Ring MW, Schwär G, Bode HB (2009) Biosynthesis of 2-hydroxy and iso-even fatty acids is connected to sphingolipid formation in myxobacteria. Chembiochem 10:2003–2010CrossRefGoogle Scholar
  44. Roggo C, Coronado E, Moreno-Forero SK, Harshman K, Weber J, van der Meer JR (2013) Genome-wide transposon insertion scanning of environmental survival functions in the polycyclic aromatic hydrocarbon degrading bacterium Sphingomonas wittichii RW1. Environ Microbiol 13:2681–2695Google Scholar
  45. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K, Joubert JJ (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177CrossRefGoogle Scholar
  46. Webster SP, Alexeev D, Campopiano DJ, Watt RM, Alexeeva M, Sawyer L, Baxter RL (2000) Mechanism of 8-amino-7-oxononanoate synthase: spectroscopic, kinetic, and crystallographic studies. Biochemistry 39:516–528CrossRefGoogle Scholar
  47. Weintraub A, Zähringer U, Wollenweber HW, Seydel U, Rietschel ET (1989) Structural characterization of the lipid a component of Bacteroides fragilis strain NCTC9343 lipopolysaccharide. Eur J Biochem 183:425–431CrossRefGoogle Scholar
  48. White RH (1984) Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. J Bacteriol 159:42–46PubMedPubMedCentralGoogle Scholar
  49. Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 83:99–128CrossRefGoogle Scholar
  50. Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J, Kronenberg M, Sonnenburg JL, Comstock LE, Bluestone JA, Fischbach MA (2013) Production of α-galactosyl ceramide by a prominent member of the human gut microbiota. PLoS Biol 11(7):e1001610CrossRefGoogle Scholar
  51. Woznica A, Cantley AM, Beemelmanns C, Freinkman E, Clardy J, King J (2016) Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc Natl Acad Sci U S A 113:7894–7899CrossRefGoogle Scholar
  52. Wu D, Zajonc DM, Fujio M, Sullivan BA, Kinjo Y, Kronenberg M, Wilson IA, Wong CH (2006) Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci U S A 103:3972–3977CrossRefGoogle Scholar
  53. Yano I, Tomiyasu I, Yabuuchi E (1982) Long chain base composition of strains of three species of Sphingobacterium gen. nov. FEMS Microbiol Lett 15:303–307CrossRefGoogle Scholar
  54. Yano I, Imaizumi S, Tomiyasu I, Yabuuchi E (1983) Separation and analysis of free ceramides containing 2-hydroxy fatty acids in Sphingobacterium species. FEMS Microbiol Lett 20:449–453CrossRefGoogle Scholar
  55. Yard BA, Carter LG, Johnson KA, Overton IM, Dorward M, Liu H, McMahon SA, Oke M, Puech D, Barton GJ, Naismith JH, Campopiano DJ (2007) The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J Mol Biol 370:870–886CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Otto Geiger
    • 1
    Email author
  • Jonathan Padilla-Gómez
    • 1
  • Isabel M. López-Lara
    • 2
  1. 1.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de México (UNAM)CuernavacaMexico

Personalised recommendations