Advertisement

Anaerobic Degradation of Hydrocarbons: Mechanisms of Hydrocarbon Activation in the Absence of Oxygen

  • Matthias BollEmail author
  • Sebastian Estelmann
  • Johann Heider
Reference work entry
  • 41 Downloads
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Hydrocarbons are highly abundant in nature and are formed either via geochemical or biological processes. Their high C–H bond dissociation energies are responsible for low chemical reactivities. Due to the toxicity of many hydrocarbons, their biological degradation is of environmental concern. In the presence of oxygen, the C–H bond is activated by oxygenases involving enzyme-bound reactive oxygen species in exergonic reactions. In contrast, anaerobic hydrocarbon-degrading bacteria use a number of alternative enzymatic reactions for the mechanistically sophisticated C–H bond activation. Some of these reactions are only known from anaerobic hydrocarbon degradation pathways, and some follow unprecedented biochemical mechanisms. The known oxygen-independent activation reactions of hydrocarbons comprise (1) hydroxylation with water by enzymes containing molybdenum or flavin cofactors, (2) addition to fumarate by glycyl-radical enzymes, (3) carboxylation, (4) water addition at multiple bonds, and (5) reverse methanogenesis. Our current knowledge of these enzymes varies greatly. Whereas an ethylbenzene hydroxylating molybdenum enzyme, a glycyl-radical enzyme adding alkyl groups to fumarate, and different types of enzymes adding water to C=C double and triple bonds have structurally and functionally been characterized, less is known about enzyme(s) involved in naphthalene carboxylation and methane degradation via reverse methanogenesis. The initial mode of benzene activation is still at issue (carboxylation vs. hydroxylation).

References

  1. Abu Laban N, Selesi D, Jobelius C, Meckenstock RU (2009) Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria. FEMS Microbiol Ecol 68:300–311CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796PubMedPubMedCentralGoogle Scholar
  3. Abu Laban N, Dao A, Semple K, Foght J (2015) Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions. Environ Microbiol 17:4898–4915CrossRefGoogle Scholar
  4. Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369CrossRefGoogle Scholar
  5. Annweiler E, Michaelis W, Meckenstock RU (2002) Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl Environ Microbiol 68:852–858CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arshad A, Speth DR, de Graaf RM, Op den Camp HJ, Jetten MS, Welte CU (2015) A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by methanoperedens-like archaea. Front Microbiol 6:1423CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ball HA, Johnson HA, Reinhard M, Spormann AM (1996) Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J Bacteriol 178:5755–5761CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beller HR, Spormann AM (1998) Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. J Bacteriol 180:5454–5457CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beller HR, Spormann AM (1999) Substrate range of benzylsuccinate synthase from Azoarcus sp. strain T. FEMS Microbiol Lett 178:147–153CrossRefGoogle Scholar
  10. Beller HR, Reinhard M, Grbić-Galić D (1992) Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl Environ Microbiol 58:3192–3195CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bergmann F, Selesi D, Weinmaier T, Tischler P, Rattei T, Meckenstock RU (2011a) Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. Environ Microbiol 13:1125–1137CrossRefGoogle Scholar
  12. Bergmann FD, Selesi D, Meckenstock RU (2011b) Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47. Arch Microbiol 193:241–250CrossRefPubMedPubMedCentralGoogle Scholar
  13. Biegert T, Fuchs G, Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238:661–668CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefGoogle Scholar
  16. Boll M, Heider J (2009) Anaerobic degradation of hydrocarbons: mechanisms of C-H-bond activation in the absence of oxygen. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 1011–1024Google Scholar
  17. Boll M, Fuchs G, Heider J (2002) Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Microbiol 6:604–611Google Scholar
  18. Boll M, Einsle O, Ermler U, Kroneck PM, Ullmann GM (2016) Structure and function of the unusual tungsten enzymes acetylene hydratase and class II benzoyl-coenzyme A reductase. J Mol Microbiol Biotechnol 26:119–137CrossRefGoogle Scholar
  19. Brodkorb D, Gottschall M, Marmulla R, Lüddeke F, Harder J (2010) Linalool dehydratase-isomerase, a bifunctional enzyme in the anaerobic degradation of monoterpenes. J Biol Chem 285:30436–30442CrossRefPubMedPubMedCentralGoogle Scholar
  20. Caldwell EC, Suflita JM (2000) Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol 34:1216–1220CrossRefGoogle Scholar
  21. Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42:6791–6799CrossRefGoogle Scholar
  22. Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol 72:4274–4282CrossRefPubMedPubMedCentralGoogle Scholar
  23. Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJ, García JL, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chiang Y, Ismail W, Müller M, Fuchs G (2007) Initial steps in the anoxic metabolism of cholesterol by the denitrifying Sterolibacterium denitrificans. J Biol Chem 282:13240–13249CrossRefGoogle Scholar
  25. Cui M, Ma A, Qi H, Zhuang X, Zhuang G (2015) Anaerobic oxidation of methane: an “active” microbial process. Microbiology 4:1–11Google Scholar
  26. Cunane LM, Chen ZW, Shamala N, Mathews FS, Cronin CN, McIntire WS (2000) Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism. J Mol Biol 295:357–374CrossRefPubMedGoogle Scholar
  27. Cunane LM, Chen Z, McIntire WS, Mathews FS (2005) p-Cresol methylhydroxylase: alteration of the structure of the flavoprotein subunit upon its binding to the cytochrome subunit. Biochemistry 44:2963–2973CrossRefGoogle Scholar
  28. Dermer J, Fuchs G (2012) Molybdoenzyme that catalyzes the anaerobic hydroxylation of a tertiary carbon atom in the side chain of cholesterol. J Biol Chem 287:36905–36916CrossRefPubMedPubMedCentralGoogle Scholar
  29. Duboc-Toia C, Hassan AK, Mulliez E, Ollagnier-de Choudens S, Fontecave M, Leutwein C, Heider J (2003) Very high-field EPR study of glycyl radical enzymes. J Am Chem Soc 125:38–39CrossRefGoogle Scholar
  30. Efimov I, Cronin CN, Bergmann DJ, Kuusk V, McIntire WS (2004) Insight into covalent flavinylation and catalysis from redox, spectral, and kinetic analyses of the R474K mutant of the flavoprotein subunit of p-cresol methylhydroxylase. Biochemistry 43:6138–6148CrossRefGoogle Scholar
  31. Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–73CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs K, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548CrossRefPubMedPubMedCentralGoogle Scholar
  33. Evans PJ, Ling W, Goldschmidt B, Ritter ER, Young LY (1992) Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl Environ Microbiol 58:496–501CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 9:803–816CrossRefPubMedPubMedCentralGoogle Scholar
  35. Funk MA, Marsh EN, Drennan CL (2015) Substrate-bound structures of benzylsuccinate synthase reveal how toluene is activated in anaerobic hydrocarbon degradation. J Biol Chem 290:22398–22408CrossRefPubMedPubMedCentralGoogle Scholar
  36. Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10:376–385CrossRefPubMedPubMedCentralGoogle Scholar
  37. Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601CrossRefPubMedGoogle Scholar
  38. Harmer J, Finazzo C, Piskorski R, Ebner S, Duin EC, Goenrich M, Thauer RK, Reiher M, Schweiger A, Hinderberger D, Jaun B (2008) A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle. J Am Chem Soc 130:10907–10920CrossRefGoogle Scholar
  39. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570CrossRefPubMedPubMedCentralGoogle Scholar
  40. Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 11:188–194CrossRefPubMedPubMedCentralGoogle Scholar
  41. Heider J, Rabus R (2008) Genomic insights in the anaerobic biodegradation of organic pollutants. Caister Academic, NorfolkGoogle Scholar
  42. Heider J, Schühle K (2013) Anaerobic biodegradation of hydrocarbons including methane. In: Rosenberg E, Delong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Heidelberg, pp 601–630Google Scholar
  43. Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473CrossRefGoogle Scholar
  44. Heider J, Szaleniec M, Martins BM, Seyhan D, Buckel W, Golding BT (2016a) Structure and function of benzylsuccinate synthase and related fumarate-adding glycyl radical enzymes. J Mol Microbiol Biotechnol 26:29–44CrossRefPubMedGoogle Scholar
  45. Heider J, Szaleniec M, Sünwoldt K, Boll M (2016b) Ethylbenzene dehydrogenase and related molybdenum enzymes involved in oxygen-independent alkyl chain hydroxylation. J Mol Microbiol Biotechnol 26:45–62CrossRefPubMedGoogle Scholar
  46. Herath A, Wawrik B, Qin Y, Zhou J, Callaghan AV (2016) Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses. FEMS Microbiol Ecol 92:fiw062CrossRefGoogle Scholar
  47. Hilberg M, Pierik AJ, Bill E, Friedrich T, Lippert M, Heider J (2012) Identification of FeS clusters in the glycyl-radical enzyme benzylsuccinate synthase via EPR and Mössbauer spectroscopy. J Biol Inorg Chem 17:49–56CrossRefPubMedPubMedCentralGoogle Scholar
  48. Himo F (2005) C-C bond formation and cleavage in radical enzymes, a theoretical perspective. Biochim Biophys Acta 1707:24–33CrossRefGoogle Scholar
  49. Jaekel U, Zedelius J, Wilkes H, Musat F (2015) Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments. Front Microbiol 6:116CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jarling R, Sadeghi M, Drozdowska M, Lahme S, Buckel W, Rabus R, Widdel F, Golding BT, Wilkes H (2012) Stereochemical investigations reveal the mechanism of the bacterial activation of n-alkanes without oxygen. Angew Chem Int Ed Engl 51:1334–1338CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jarling R, Kühner S, Basílio Janke E, Gruner A, Drozdowska M, Golding BT, Rabus R, Wilkes H (2015) Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions. Front Microbiol 6:880CrossRefPubMedPubMedCentralGoogle Scholar
  52. Johannes J, Bluschke A, Jehmlich N, von Bergen M, Boll M (2008) Purification and characterization of active-site components of the putative p-cresol methylhydroxylase membrane complex from Geobacter metallireducens. J Bacteriol 190:6493–6500CrossRefPubMedPubMedCentralGoogle Scholar
  53. Johnson HA, Spormann AM (1999) In vitro studies on the initial reactions of anaerobic ethylbenzene mineralization. J Bacteriol 181:5662–5668CrossRefPubMedPubMedCentralGoogle Scholar
  54. Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183:4536–4542CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kasai Y, Takahata Y, Manefield M, Watanabe K (2006) RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 72:3586–3592CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kasai Y, Kodama Y, Takahata Y, Hoaki T, Watanabe K (2007) Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11. Environ Sci Technol 41:6222–6227CrossRefGoogle Scholar
  57. Kloer DP, Hagel C, Heider J, Schulz GE (2006) Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure 14:1377–1388CrossRefPubMedGoogle Scholar
  58. Knack D, Hagel C, Szaleniec M, Dudzik A, Salwinski A, Heider J (2012) Substrate and inhibitor spectra of ethylbenzene dehydrogenase: perspectives on application potential and catalytic mechanism. Appl Environ Microbiol 78:6475–6482CrossRefPubMedPubMedCentralGoogle Scholar
  59. Knack DH, Marshall JL, Harlow GP, Dudzik A, Szaleniec M, Liu S, Heider J (2013) BN/CC isosteric compounds as enzyme inhibitors: N- and B-ethyl-1,2-azaborine inhibit ethylbenzene hydroxylation as nonconvertible substrate analogues. Angew Chem Int Ed Engl 52:2599–2601CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kniemeyer O, Heider J (2001) Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276:21381–21386CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901CrossRefPubMedPubMedCentralGoogle Scholar
  63. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334CrossRefPubMedPubMedCentralGoogle Scholar
  64. Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479CrossRefPubMedPubMedCentralGoogle Scholar
  65. Krieger CJ, Roseboom W, Albracht SP, Spormann AM (2001) A stable organic free radical in anaerobic benzylsuccinate synthase of Azoarcus sp. strain T. J Biol Chem 276:12924–12927CrossRefGoogle Scholar
  66. Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Böcher R, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kümmel S, Kuntze K, Vogt C, Boll M, Heider J, Richnow HH (2013) Evidence for benzylsuccinate synthase subtypes obtained by using stable isotope tools. J Bacteriol 195:4660–4667CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kunapuli U, Griebler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 10:1703–1712CrossRefPubMedGoogle Scholar
  69. Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W, Schiltz E, Schägger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628CrossRefPubMedGoogle Scholar
  70. Leutwein C, Heider J (1999) Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and β-oxidation of the first intermediate, (R)-(+)-benzylsuccinate. Microbiology 145:3265–3271CrossRefGoogle Scholar
  71. Li L, Marsh NE (2006) Mechanism of benzylsuccinate synthase probed by substrate and isotope exchange. J Am Chem Soc 128:16056–16057CrossRefPubMedPubMedCentralGoogle Scholar
  72. Liao R, Thiel W (2013) Convergence in the QM-only and QM/MM modeling of enzymatic reactions: a case study for acetylene hydratase. J Comput Chem 34:2389–2397PubMedGoogle Scholar
  73. Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 39:147–164CrossRefGoogle Scholar
  74. Lüddeke F, Harder J (2011) Enantiospecific (S)-(+)-linalool formation from β-myrcene by linalool dehydratase-isomerase. Z Naturforsch 66:409–412Google Scholar
  75. Lüddeke F, Dikfidan A, Harder J (2012) Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans. BMC Microbiol 12:192CrossRefPubMedPubMedCentralGoogle Scholar
  76. Luo YR (2003) Handbook of bond dissociation energies in organic compounds, 1st edn. CRC Press, Boca RatonGoogle Scholar
  77. Luo F, Devine CE, Edwards EA (2015) Cultivating microbial dark matter in benzene-degrading methanogenic consortia. Environ Microbiol 18:2923.  https://doi.org/10.1111/1462-2920.13121CrossRefPubMedGoogle Scholar
  78. Marmulla R, Cala EP, Markert S, Schweder T, Harder J (2016a) The anaerobic linalool metabolism in Thauera linaloolentis 47 Lol. BMC Microbiol 16:76CrossRefPubMedPubMedCentralGoogle Scholar
  79. Marmulla R, Šafarić B, Markert S, Schweder T, Harder J (2016b) Linalool isomerase, a membrane-anchored enzyme in the anaerobic monoterpene degradation in Thauera linaloolentis 47Lol. BMC Biochem 17:6CrossRefPubMedPubMedCentralGoogle Scholar
  80. McLeod MP, Eltis LD (2008) Genomic insights into the aerobic pathways for degradation of organic pollutants. Academic, NorfolkGoogle Scholar
  81. Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414CrossRefPubMedPubMedCentralGoogle Scholar
  82. Meckenstock RU, Elsner M, Griebler C, Lueders T, Stumpp C, Aamand J, Agathos SN, Albrechtsen H, Bastiaens L, Bjerg PL, Boon N, Dejonghe W, Huang WE, Schmidt SI, Smolders E, Sørensen SR, Springael D, van Breukelen BM (2015) Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environ Sci Technol 49:7073–7081CrossRefGoogle Scholar
  83. Meckenstock RU, Boll M, Mouttaki H, Kölschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118CrossRefPubMedGoogle Scholar
  84. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546CrossRefPubMedPubMedCentralGoogle Scholar
  85. Morasch B, Schink B, Tebbe CC, Meckenstock RU (2004) Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol 181:407–417CrossRefPubMedGoogle Scholar
  86. Mouttaki H, Johannes J, Meckenstock RU (2012) Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 14:2770–2774CrossRefPubMedPubMedCentralGoogle Scholar
  87. Muhr E, Schühle K, Clermont L, Sünwoldt K, Kleinsorge D, Seyhan D, Kahnt J, Schall I, Cordero PR, Schmitt G, Heider J (2015) Enzymes of anaerobic ethylbenzene and p-ethylphenol catabolism in ‘Aromatoleum aromaticum’: differentiation and differential induction. Arch Microbiol 197:1051–1062CrossRefPubMedGoogle Scholar
  88. Muhr E, Leicht O, González Sierra S, Thanbichler M, Heider J (2016) A fluorescent bioreporter for acetophenone and 1-phenylethanol derived from a specifically induced catabolic operon. Front Microbiol 6:1561CrossRefPubMedPubMedCentralGoogle Scholar
  89. Müller JA, Galushko AS, Kappler A, Schink B (2001) Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in Desulfobacterium cetonicum. J Bacteriol 183:752–757CrossRefPubMedPubMedCentralGoogle Scholar
  90. Musat F, Widdel F (2008) Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype. Environ Microbiol 10:10–19PubMedGoogle Scholar
  91. Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219CrossRefPubMedPubMedCentralGoogle Scholar
  92. Musat F, Vogt C, Richnow HH (2016) Carbon and hydrogen stable isotope fractionation associated with the aerobic and anaerobic degradation of saturated and alkylated aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:211–226CrossRefPubMedPubMedCentralGoogle Scholar
  93. Nauhaus K, Treude T, Boetius A, Krüger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7:98–106CrossRefGoogle Scholar
  94. Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858CrossRefGoogle Scholar
  95. Petasch J, Disch E, Markert S, Becher D, Schweder T, Hüttel B, Reinhardt R, Harder J (2014) The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen. BMC Microbiol 14:164CrossRefPubMedPubMedCentralGoogle Scholar
  96. Peters F, Heintz D, Johannes J, van Dorsselaer A, Boll M (2007) Genes, enzymes, and regulation of para-cresol metabolism in Geobacter metallireducens. J Bacteriol 189:4729–4738CrossRefPubMedPubMedCentralGoogle Scholar
  97. Qiao C, Marsh NE (2005) Mechanism of benzylsuccinate synthase: stereochemistry of toluene addition to fumarate and maleate. J Am Chem Soc 127:8608–8609CrossRefGoogle Scholar
  98. Rabus R, Heider J (1998) Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch Microbiol 170:377–384CrossRefGoogle Scholar
  99. Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183:1707–1715CrossRefPubMedPubMedCentralGoogle Scholar
  100. Rabus R, Jarling R, Lahme S, Kühner S, Heider J, Widdel F, Wilkes H (2011) Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ Microbiol 13:2576–2586CrossRefGoogle Scholar
  101. Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PM, Krüger M, Lueders T, Martins BM, Musat F, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann GM, Vogt C, von Bergen M, Wilkes H (2016a) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28CrossRefPubMedGoogle Scholar
  102. Rabus R, Boll M, Golding B, Wilkes H (2016b) Anaerobic degradation of p-alkylated benzoates and toluenes. J Mol Microbiol Biotechnol 26:63–75CrossRefPubMedGoogle Scholar
  103. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damsté JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921CrossRefGoogle Scholar
  104. Reeve CD, Carver MA, Hopper DJ (1989) The purification and characterization of 4-ethylphenol methylenehydroxylase, a flavocytochrome from Pseudomonas putida JD1. Biochem J 263:431–437CrossRefPubMedPubMedCentralGoogle Scholar
  105. Safinowski M, Meckenstock RU (2004) Enzymatic reactions in anaerobic 2-methylnaphthalene degradation by the sulphate-reducing enrichment culture N 47. FEMS Microbiol Lett 240:99–104CrossRefPubMedPubMedCentralGoogle Scholar
  106. Safinowski M, Meckenstock RU (2006) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ Microbiol 8:347–352CrossRefGoogle Scholar
  107. Sakai N, Kurisu F, Yagi O, Nakajima F, Yamamoto K (2009) Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures. J Biosci Bioeng 108:501–507CrossRefGoogle Scholar
  108. Salinero KK, Keller K, Feil WS, Feil H, Trong S, Di Bartolo G, Lapidus A (2009) Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics 10:351CrossRefPubMedPubMedCentralGoogle Scholar
  109. Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608CrossRefGoogle Scholar
  110. Scheller S, Goenrich M, Thauer RK, Jaun B (2013) Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane. J Am Chem Soc 135:14975–14984CrossRefGoogle Scholar
  111. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707CrossRefPubMedPubMedCentralGoogle Scholar
  112. Schink B (1985) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301CrossRefGoogle Scholar
  113. Schühle K, Fuchs G (2004) Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186:4556–4567CrossRefPubMedPubMedCentralGoogle Scholar
  114. Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PM, Einsle O (2007) Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Proc Natl Acad Sci USA 104:3073–3077CrossRefGoogle Scholar
  115. Selesi D, Meckenstock RU (2009) Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. FEMS Microbiol Ecol 68:86–93CrossRefGoogle Scholar
  116. Selesi D, Jehmlich N, von Bergen M, Schmidt F, Rattei T, Tischler P, Lueders T, Meckenstock RU (2010) Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Bacteriol 192:295–306CrossRefGoogle Scholar
  117. Selmer T, Pierik AJ, Heider J (2005) New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria. Biol Chem 386:981–988CrossRefPubMedGoogle Scholar
  118. Seyhan D, Friedrich P, Szaleniec M, Hilberg M, Buckel W, Golding BT, Heider J (2016) Elucidating the stereochemistry of enzymatic benzylsuccinate synthesis with chirally labeled toluene. Angew Chem Int Ed Engl 55:11664.  https://doi.org/10.1002/anie.201605197CrossRefPubMedGoogle Scholar
  119. Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, Ermler U (2012) Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481:98–101CrossRefGoogle Scholar
  120. So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69:3892–3900CrossRefPubMedPubMedCentralGoogle Scholar
  121. Soo VW, McAnulty MJ, Tripathi A, Zhu F, Zhang L, Hatzakis E, Smith PB, Agrawal S, Nazem-Bokaee H, Gopalakrishnan S, Salis HM, Ferry JG, Maranas CD, Patterson AD, Wood TK (2016) Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb Cell Factories 15:11CrossRefGoogle Scholar
  122. Strijkstra A, Trautwein K, Jarling R, Wöhlbrand L, Dörries M, Reinhardt R, Drozdowska M, Golding BT, Wilkes H, Rabus R (2014) Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol 80:7592–7603CrossRefPubMedPubMedCentralGoogle Scholar
  123. Szaleniec M, Heider J (2016) Modeling of the reaction mechanism of enzymatic radical C-C coupling by benzylsuccinate synthase. Int J Mol Sci 17:514CrossRefPubMedPubMedCentralGoogle Scholar
  124. Szaleniec M, Hagel C, Menke M, Nowak P, Witko M, Heider J (2007) Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase. Biochemistry 46:7637–7646CrossRefGoogle Scholar
  125. Szaleniec M, Borowski T, Schühle K, Witko M, Heider J (2010) Ab initio modeling of ethylbenzene dehydrogenase reaction mechanism. J Am Chem Soc 132:6014–6024CrossRefPubMedGoogle Scholar
  126. Szaleniec M, Dudzik A, Kozik B, Borowski T, Heider J, Witko M (2014) Mechanistic basis for the enantioselectivity of the anaerobic hydroxylation of alkylaromatic compounds by ethylbenzene dehydrogenase. J Inorg Biochem 139:9–20CrossRefPubMedGoogle Scholar
  127. Tataruch M, Heider J, Bryjak J, Nowak P, Knack D, Czerniak A, Liesiene J, Szaleniec M (2014) Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production. J Biotechnol 192(Pt B):400–409CrossRefGoogle Scholar
  128. tenBrink F, Schink B, Kroneck PM (2011) Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase. J Bacteriol 193:1229–1236CrossRefGoogle Scholar
  129. Thauer RK (2010) Functionalization of methane in anaerobic microorganisms. Angew Chem Int Ed Engl 49:6712–6713CrossRefGoogle Scholar
  130. Thauer RK (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14:292–299CrossRefGoogle Scholar
  131. Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann NY Acad Sci 1125:158–170CrossRefGoogle Scholar
  132. Ulrich AC, Beller HR, Edwards EA (2005) Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 39:6681–6691CrossRefPubMedPubMedCentralGoogle Scholar
  133. Verfürth K, Pierik AJ, Leutwein C, Zorn S, Heider J (2004) Substrate specificities and electron paramagnetic resonance properties of benzylsuccinate synthases in anaerobic toluene and m-xylene metabolism. Arch Microbiol 181:155–162CrossRefPubMedGoogle Scholar
  134. von Netzer F, Kuntze K, Vogt C, Richnow HH, Boll M, Lueders T (2016) Functional gene markers for fumarate-adding and dearomatizing key enzymes in anaerobic aromatic hydrocarbon degradation in terrestrial environments. J Mol Microbiol Biotechnol 26:180–194CrossRefGoogle Scholar
  135. Wawrik B, Marks CR, Davidova IA, McInerney MJ, Pruitt S, Duncan KE, Suflita JM, Callaghan AV (2016) Methanogenic paraffin degradation proceeds via alkane addition to fumarate by ‘Smithella’ spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ Microbiol 18:2604–2619CrossRefGoogle Scholar
  136. Weelink SA, Tan NC, Ten Broeke H, van Doesburg W, Langenhoff AA, Gerritse J, Stams AJ (2007) Physiological and phylogenetic characterization of a stable benzene-degrading, chlorate-reducing microbial community. FEMS Microbiol Ecol 60:312–321CrossRefGoogle Scholar
  137. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590CrossRefGoogle Scholar
  138. Weidenweber S, Marmulla R, Ermler U, Harder J (2016) X-ray structure of linalool dehydratase/isomerase from Castellaniella defragrans reveals enzymatic alkene synthesis. FEBS Lett 590:1375–1383CrossRefGoogle Scholar
  139. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276CrossRefGoogle Scholar
  140. Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Arch Microbiol 177:235–243CrossRefGoogle Scholar
  141. Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138–151CrossRefPubMedGoogle Scholar
  142. Wöhlbrand L, Wilkes H, Halder T, Rabus R (2008) Anaerobic degradation of p-ethylphenol by “Aromatoleum aromaticum” strain EbN1: pathway, regulation, and involved proteins. J Bacteriol 190:5699–709Google Scholar
  143. Wöhlbrand L, Jacob JH, Kube M, Mussmann M, Jarling R, Beck A, Amann R, Wilkes H, Reinhardt R, Rabus R (2013) Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. Environ Microbiol 15:1334–1355CrossRefPubMedGoogle Scholar
  144. Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Schreiber F, Ehrenreich P, Behrends A, Wilkes H, Kube M, Reinhardt R, Widdel F (2011) Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol Rep 3:125–135CrossRefPubMedPubMedCentralGoogle Scholar
  145. Zhang X, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63:4759–4764CrossRefPubMedPubMedCentralGoogle Scholar
  146. Zhang X, Sullivan ER, Young LY (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11:117–124CrossRefPubMedPubMedCentralGoogle Scholar
  147. Zhang T, Bain TS, Nevin KP, Barlett MA, Lovley DR (2012) Anaerobic benzene oxidation by Geobacter species. Appl Environ Microbiol 78:8304–8310CrossRefPubMedPubMedCentralGoogle Scholar
  148. Zhang T, Tremblay P, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2013) Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol 79:7800–7806CrossRefPubMedPubMedCentralGoogle Scholar
  149. Zhang T, Tremblay P, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2014) Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Front Microbiol 5:245PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Matthias Boll
    • 1
    • 2
    Email author
  • Sebastian Estelmann
    • 3
    • 1
  • Johann Heider
    • 4
    • 5
  1. 1.Microbiology, Faculty of BiologyAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  2. 2.Institute of Biology II, MicrobiologyAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  3. 3.Faculty of Biology, Institute of Biologie IIUniversität FreiburgFreiburgGermany
  4. 4.Fachbereich BiologieUniversität MarburgMarburgGermany
  5. 5.Laboratory of Microbial Biochemistry, and LOEWE-Center for Synthetic MicrobiologyPhilipps-University of MarburgMarburgGermany

Personalised recommendations