Functional Genomics of Denitrifying Bacteria Degrading Hydrocarbons

Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


The betaproteobacterial Azoarcus/“Aromatoleum”/Thauera cluster harbors a large variety of denitrifiers capable of anaerobic degradation of aromatic compounds and hydrocarbons. The application of genomics and proteomics (proteogenomics) in conjunction with targeted metabolite analysis has proven instrumental to the discovery of a wide variety of novel reactions and pathways, the reconstruction of complex catabolic networks, and first steps into understanding how the latter are tuned to adapt to environmental changes. Over the past two to three decades, major advances have been achieved along three major organism-/approach-specific directions: (i) biochemistry of novel enzymatic reactions with Thauera aromatica K172 and “Aromatoleum aromaticum” EbN1, (ii) physiology and proteogenomics with “A. aromaticum” EbN1, and (iii) molecular mechanisms of transcriptional regulation with Azoarcus sp. strain CIB.


  1. Anders H-J, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45:327–333CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barragán MJL, Blázquez B, Zamarro MT, Mancheño JM, García JL, Díaz E, Carmona M (2005) BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J Biol Chem 280:10683–10694CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bellanger X, Payot S, Leblond-Bourget N, Guédon G (2014) Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 38:720–760CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blázquez B, Carmona M, García JL, Díaz E (2008) Identification and analysis of a glutaryl-CoA dehydrogenase-encoding gene and its cognate transcriptional regulator from Azoarcus sp. CIB. Environ Microbiol 10:474–482CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blázquez B, Carmona M, Díaz E (2018) Transcriptional regulation of the peripheral pathway for the anaerobic catabolism of toluene and m-xylene in Azoarcus sp. CIB. Front Microbiol 9:506CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bolden AL, Kwiatkowski CF, Colborn T (2015) New look at BTEX: are ambient levels a problem? Environ Sci Technol 49:5261–5276CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boll M, Fuchs G, Heider J (2002) Anaerobic degradation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 6:604–611CrossRefGoogle Scholar
  8. Breuer M, Rabus R, Heider J (2008) Method for producing optically active alcohols using an Azoarcus sp. EbN1 dehydrogenase. WO 2008/155302 A1Google Scholar
  9. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin by bacteria and fungi. Nat Prod Rep 28:1883CrossRefPubMedPubMedCentralGoogle Scholar
  10. Büsing I, Höffken HW, Breuer M, Wöhlbrand L, Hauer B, Rabus R (2015a) Molecular genetic and crystal structural analysis of 1-(4-hydroxyphenyl)-ethanol dehydrogenase from ‘Aromatoleum aromaticum’ EbN1. J Mol Microbiol Biotechnol 25:327–339CrossRefPubMedPubMedCentralGoogle Scholar
  11. Büsing I, Kant M, Dörries M, Wöhlbrand L, Rabus R (2015b) The predicted σ54-dependent regulator EtpR is essential for expression of genes for anaerobic p-ethylphenol and p-hydroxy-acetophenone degradation in “Aromatoleum aromaticum” EbN1. BMC Microbiol 15:251CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama A, Barragán MJL, García JL, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133CrossRefPubMedPubMedCentralGoogle Scholar
  13. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640CrossRefPubMedPubMedCentralGoogle Scholar
  14. Darley PI, Hellstern JA, Medina-Bellver JI, Marqués S, Schink B, Philipp B (2007) Heterologous expression and identification of the genes involved in anaerobic degradation of 1,3-dihydroxybenzene (resorcinol) in Azoarcus anaerobius. J Bacteriol 189:3824–3833CrossRefPubMedPubMedCentralGoogle Scholar
  15. Debnar-Daumler C, Seubert A, Schmitt G, Heider J (2014) Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism. J Bacteriol 196:483–492CrossRefPubMedPubMedCentralGoogle Scholar
  16. Decker K, Jungermann K, Thauer RK (1970) Energy production in anaerobic organisms. Angew Chem Int Ed 9:138–158CrossRefGoogle Scholar
  17. Devol AH (2015) Denitrification, anammox, and N2 production in marine sediments. Annu Rev Mar Sci 7:403–423CrossRefGoogle Scholar
  18. Ding B, Schmeling S, Fuchs G (2008) Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica – a result of promiscuous enzymes and regulators? J Bacteriol 190:1620–1630CrossRefPubMedGoogle Scholar
  19. Dudzik A, Snoch W, Borowiecki P, Opalinska-Piskorz J, Witko M, Heider J, Szaleniec M (2015) Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum. Appl Microbiol Biotechnol 99:5055–5069CrossRefPubMedPubMedCentralGoogle Scholar
  20. Duldhardt I, Gaebel J, Chrzanowski L, Nijenhuis I, Härtig C, Schauer F, Heipieper HJ (2010) Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition. Microb Biotechnol 3:201–209CrossRefPubMedPubMedCentralGoogle Scholar
  21. Durante-Rodríguez G, Zamarro MT, García JL, Díaz E, Carmona M (2006) Oxygen-dependent regulation of the central pathway for the anaerobic catabolism of aromatic compounds in Azoarcus sp. strain CIB. J Bacteriol 188:2343–2354CrossRefPubMedPubMedCentralGoogle Scholar
  22. Durante-Rodríguez G, Zamarro MT, García JL, Díaz E, Carmona M (2008) New insights into the BzdR-mediated transcriptional regulation of the anaerobic catabolism of benzoate in Azoarcus sp. CIB. Microbiology 154:306–316CrossRefPubMedPubMedCentralGoogle Scholar
  23. Durante-Rodríguez G, Valderrama JA, Mancheño JM, Rivas G, Alfonso C, Arias-Palomo E, Llorca O, García JL, Díaz E, Carmona M (2010) Biochemical characterization of the transcriptional regulator BzdR from Azoarcus sp. CIB. J Biol Chem 285:35694–35705CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ebenau-Jehle C, Thomas M, Scharf G, Kockelkorn D, Knapp B, Schühle K, Heider J, Fuchs G (2012) Anaerobic metabolism of indoleacetate. J Bacteriol 194:2894–2903CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ebenau-Jehle C, Mergelsberg M, Fischer S, Brüls T, Jehmlich N, von Bergen M, Boll M (2017) An unusual strategy for anoxic biodegradation of phthalate. ISME J 11:224–236CrossRefPubMedPubMedCentralGoogle Scholar
  26. Egli T (2010) How to live at very low substrate concentration. Water Res 44:4826–4837CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ferenci T (2008) Bacterial physiology, regulation and mutational adaptation in a chemostat environment. Adv Microb Physiol 53:169–229CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fernández H, Prandoni N, Fernández-Pascual M, Fajardo S, Morcillo C, Díaz E, Carmona M (2014) Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle. PLoS One 9:e110771CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B 368:20130164CrossRefGoogle Scholar
  30. Fu Z, Wang M, Paschke R, Rao KS, Frerman FE, Kim J-JP (2004) Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: structural bases of dehydrogenation and decarboxylation reactions. Biochemistry 43:9674–9684CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gallus C, Schink B (1998) Anaerobic degradation of α-resorcylate by Thauera aromatica strain AR-1 proceeds via oxidation and decarboxylation to hydroxyhydroquinone. Arch Microbiol 169:333–338CrossRefPubMedGoogle Scholar
  33. Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243CrossRefPubMedGoogle Scholar
  34. Harms G, Rabus R, Widdel F (1999) Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch Microbiol 172:303–312CrossRefPubMedPubMedCentralGoogle Scholar
  35. Heider J, Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596CrossRefPubMedGoogle Scholar
  36. Heider J, Fuchs G (2005) Genus Thauera. In: Garrity G (ed) Bergey’s manual of systematic bacteriology, vol 2, part C, 2nd edn. Springer, Heidelberg, pp 907–913CrossRefGoogle Scholar
  37. Heider J, Szaleniec M, Sünwoldt K, Boll M (2016) Ethylbenzene dehydrogenase and related molybdenum enzymes involved in oxygen-independent alkyl chain hydroxylation. J Mol Microbiol Biotechnol 26:45–62CrossRefPubMedGoogle Scholar
  38. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hess A, Zarda B, Hahn D, Häner A, Stax D, Höhener P, Zeyer P (1997) In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol 63:2136–2141CrossRefPubMedPubMedCentralGoogle Scholar
  40. Höffken HW, Duong M, Friedrich T, Breuer M, Hauer B, Reinhardt R, Rabus R, Heider J (2006) Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1. Biochemistry 45:82–93CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jiang K, Sanseverino J, Chauhan A, Lucas S, Copeland A, Lapidus A, Del Rio TG, Dalin E, Tice H, Bruce D, Goodwin L, Pitluck S, Sims D, Brettin T, Detter JC, Han C, Chang YJ, Larimer F, Land M, Hauser L, Kyrpides NC, Mikhailova N, Moser S, Jegier P, Close D, DeBruyn JM, Wang Y, Layton AC, Allen MS, Sayler GS (2012) Complete genome sequence of Thauera aminoaromatica strain MZ1T. Stand Genomic Sci 6:325–335CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jobst B, Schühle K, Linne U, Heider J (2010) ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. J Bacteriol 192:1387–1394CrossRefPubMedPubMedCentralGoogle Scholar
  43. Juárez JF, Zamarro MT, Eberlein C, Boll M, Carmona M, Díaz E (2013) Characterization of the mbd cluster encoding the anaerobic 3-methylbenzoyl-CoA central pathway. Environ Microbiol 15:148–166CrossRefPubMedGoogle Scholar
  44. Juárez JF, Liu H, Zamarro MT, McMahon S, Liu H, Naismith JH, Eberlein C, Boll M, Carmona M, Díaz E (2015) Unraveling the specific regulation of the central pathway for anaerobic degradation of 3-methylbenzoate. J Biol Chem 290:12165–12183CrossRefPubMedPubMedCentralGoogle Scholar
  45. Junghare M, Patil Y, Schink B (2015) Draft genome sequence of a nitrate-reducing, o-phthalate degrading bacterium, Azoarcus sp. strain PA01T. Stand Genomic Sci 10:90CrossRefPubMedPubMedCentralGoogle Scholar
  46. Junghare M, Spiteller D, Schink B (2016) Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01. Environ Microbiol 18:3175–3188CrossRefPubMedGoogle Scholar
  47. Kloer DP, Hagel C, Heider J, Schulz GE (2006) Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure 14:1377–1388CrossRefPubMedGoogle Scholar
  48. Kniemeyer O, Heider J (2001a) Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276:21381–21386CrossRefPubMedGoogle Scholar
  49. Kniemeyer O, Heider J (2001b) (S)-1-Phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Arch Microbiol 176:129–135CrossRefPubMedGoogle Scholar
  50. Koch J, Fuchs G (1992) Enzymatic reduction of benzoyl-CoA to alicyclic compounds, a key reaction in anaerobic aromatic metabolism. Eur J Biochem 205:195–202CrossRefPubMedPubMedCentralGoogle Scholar
  51. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Böhm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorhölter F-J, Weidner S, Pühler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kube M, Heider J, Amann J, Hufnagel P, Kühner S, Beck A, Reinhardt R, Rabus R (2004) Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. Arch Microbiol 181:182–194CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kühner S, Wöhlbrand L, Fritz I, Wruck W, Hultschig C, Hufnagel P, Kube M, Reinhardt R, Rabus R (2005) Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J Bacteriol 187:1493–1503CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kuntze K, Kiefer P, Baumann S, Seifert J, von Bergen M, Vorholt JA, Boll M (2011) Enzymes involved in the anaerobic degradation of meta-substituted halobenzoates. Mol Microbiol 82:758–769CrossRefPubMedGoogle Scholar
  55. Lahme S, Eberlein C, Jarling R, Kube M, Boll M, Wilkes H, Reinhardt R, Rabus R (2012a) Anaerobic degradation of 4-methylbenzoate via a specific 4-methylbenzoyl-CoA pathway. Environ Microbiol 14:1118–1132CrossRefPubMedGoogle Scholar
  56. Lahme S, Harder J, Rabus R (2012b) Anaerobic degradation of 4-methylbenzoate by a newly isolated denitrifying bacterium, strain pMbN1. Appl Environ Microbiol 78:1606–1610CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lahme S, Trautwein K, Strijkstra A, Dörries M, Wöhlbrand L, Rabus R (2014) Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1. BMC Microbiol 14:269CrossRefPubMedPubMedCentralGoogle Scholar
  58. López Barragán MJ, Carmona M, Zamarro MT, Thiele B, Boll M, Fuchs G, García JL, Díaz E (2004) The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB. J Bacteriol 186:5762–5774CrossRefPubMedPubMedCentralGoogle Scholar
  59. Martín-Moldes Z, Zamarro MT, del Cerro C, Valencia A, Gómez MJ, Arcas A, Udaondo Z, García JL, Nogales J, Carmona M, Díaz E (2015) Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol 38:462–471CrossRefPubMedPubMedCentralGoogle Scholar
  60. Martín-Moldes Z, Blázquez B, Baraquet C, Harwood CS, Zamarro MT, Díaz E (2016) Degradation of cyclic diguanosine monophosphate by a hybrid two-component protein protects Azoarcus sp. strain CIB from toluene toxicity. PNAS 113:13174–13179CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mergelsberg M, Willistein M, Meyer H, Stärk H-J, Bechtel DF, Pierik AJ, Boll M (2017) Phthaloyl-coenzyme A decarboxylase from Thauera chlorobenzoica: the prenylated flavin-, K+- and Fe2+-dependent key enzyme of anaerobic phthalate degradation. Environ Microbiol 19:3734–3744CrossRefPubMedPubMedCentralGoogle Scholar
  62. Molina-Fuentes A, Pacheco D, Marín P, Philipp B, Schink B, Marqués S (2015) Identification of the gene cluster for the anaerobic degradation of 3,5-dihydroxybenzoate (α-resorcylate) in Thauera aromatica strain AR-1. Appl Environ Microbiol 81:7201–7214CrossRefPubMedPubMedCentralGoogle Scholar
  63. Morales G, Linares JF, Beloso A, Albar JP, Martínez JL, Rojo F (2004) The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J Bacteriol 186:1337–1344CrossRefPubMedPubMedCentralGoogle Scholar
  64. Muhr E, Schühle K, Clermont L, Sünwoldt K, Kleinsorge D, Seyhan D, Kahnt J, Schall I, Cordero PR, Schmitt G, Heider J (2015) Enzymes of anaerobic ethylbenzene and p-ethylphenol catabolism in ‘Aromatoleum aromaticum’: differentiation and differential induction. Arch Microbiol 197:1051–1062CrossRefPubMedGoogle Scholar
  65. Muhr E, Leicht O, González Sierra S, Thanbichler M, Heider J (2016) A fluorescent bioreporter for acetophenone and 1-phenylethanol derived from a specifically induced catabolic operon. Front Microbiol 6:1561CrossRefPubMedPubMedCentralGoogle Scholar
  66. Nazina TN, Shestakova NM, Semenova EM, Korshunova AV, Kostrukova NK, Tourova TP, Min L, Feng Q, Poltaraus AB (2017) Diversity of metabolically active Bacteria in water-flooded high-temperature heavy oil reservoir. Front Microbiol 8:707CrossRefPubMedPubMedCentralGoogle Scholar
  67. Novick A, Szilard L (1950) Description of the chemostat. Science 112:715–716CrossRefPubMedPubMedCentralGoogle Scholar
  68. Overton EB, Wade TL, Radović JR, Meyer BM, Miles MS, Larter SR (2016) Chemical composition of Macondo and other crude oils and compositional alterations during oil spills. Oceanography 29:50–63CrossRefGoogle Scholar
  69. Pacheco-Sánchez D, Molina-Fuentes Á, Marín P, Medina-Bellver J-I, González-López Ó, Marqués S (2017) The Azoarcus anaerobius 1,3-dihydroxybenzene (resorcinol) anaerobic degradation pathway is controlled by the coordinated activity of two enhancer-binding proteins. Appl Environ Microbiol 83:e03042–e03016CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pajares S, Bohannan BJM (2016) Ecology of nitrogen fixing, nitrifying and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045PubMedPubMedCentralGoogle Scholar
  71. Rabus R (2005) Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 68:580–587Google Scholar
  72. Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103CrossRefPubMedGoogle Scholar
  73. Rabus R, Widdel F (1996) Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil. Appl Environ Microbiol 62:1238–1241CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rabus R, Kube M, Beck A, Widdel F, Reinhardt R (2002) Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 178:506–516CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183:27–36CrossRefGoogle Scholar
  76. Rabus R, Trautwein K, Wöhlbrand L (2014) Towards habitat-oriented systems biology of “Aromatoleum aromaticum” EbN1. Chemical sensing, catabolic network modulation and growth control in anaerobic aromatic compound degradation. Appl Microbiol Biotechnol 98:3371–3388CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PMH, Krüger M, Lueders T, Martins BM, Musat F, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann GM, Vogt C, von Bergen M, Wilkes H (2016a) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28CrossRefPubMedGoogle Scholar
  78. Rabus R, Boll M, Golding B, Wilkes H (2016b) Anaerobic degradation of p-alkylated benzoates and toluenes. J Mol Microbiol Biotechnol 26:63–75CrossRefPubMedGoogle Scholar
  79. Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-González MI, Rojas A, Terán W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768CrossRefGoogle Scholar
  80. Reeve CD, Carver MA, Hopper DJ (1989) The purification and characterization of 4-ethylphenol methylenehydroxylase, a flavocytochrome from Pseudomonas putida JD1. Biochem J 263:431–437CrossRefPubMedPubMedCentralGoogle Scholar
  81. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schaechter M, Maaløe O, Kjeldgaard NO (1958) Dependency of medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol 19:592–606CrossRefPubMedPubMedCentralGoogle Scholar
  83. Schmitt G, Arndt F, Kahnt J, Heider J (2017) Adaptations to a loss-of-function mutation in the betaproteobacterium Aromatoleum aromaticum: recruitment of alternative enzymes for anaerobic phenylalanine degradation. J Bacteriol 199:e00383–e00317CrossRefPubMedPubMedCentralGoogle Scholar
  84. Schühle K, Heider J (2012) Acetone and butanone metabolism of the denitrifying bacterium “Aromatoleum aromaticum” demonstrates novel biochemical properties of an ATP-dependent aliphatic ketone carboxylase. J Bacteriol 194:131–141CrossRefPubMedPubMedCentralGoogle Scholar
  85. Schühle K, Nies J, Heider J (2016) An indoleacetate-CoA ligase and a phenylsuccinyl-CoA transferase involved in anaerobic metabolism of auxin. Environ Microbiol 18:3120–3132CrossRefPubMedGoogle Scholar
  86. Shapleigh JP (2013) Denitrifying prokaroytes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes – prokaryotic physiology and biochemistry, vol 10. Springer, Heidelberg, pp 405–425Google Scholar
  87. Sikkema J, DE Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222CrossRefPubMedPubMedCentralGoogle Scholar
  88. Song B, Palleroni NJ, Kerkhof LJ, Häggblom MM (2001) Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 51:589–602CrossRefPubMedGoogle Scholar
  89. Springer N, Ludwig W, Philipp B, Schink B (1998) Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. Int J Syst Bacteriol 48:953–956CrossRefPubMedPubMedCentralGoogle Scholar
  90. Strijkstra A, Trautwein K, Jarling R, Wöhlbrand L, Dörries M, Reinhardt R, Drozdowska M, Golding BT, Wilkes H, Rabus R (2014) Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl Environ Microbiol 80:7592–7603CrossRefPubMedPubMedCentralGoogle Scholar
  91. Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA (1982) Denitrification: ecological niches, competition and survival. Antonie Van Leeuwenhoek 48:569–583CrossRefPubMedPubMedCentralGoogle Scholar
  92. Tiedt O, Mergelsberg M, Boll K, Müller M, Adrian L, Jehmlich N, von Bergen M, Boll M (2016) ATP-dependent C–F bond cleavage allows the complete degradation of 4-fluoroaromatics without oxygen. MBio 7:e00990–e00916CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tiedt O, Mergelsberg M, Eisenreich W, Boll M (2017) Promiscuous defluorinating enoyl-CoA hydratases/hydrolases allow for complete anaerobic degradation of 2-fluorobenzoate. Front Microbiol 8:2579CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tiedt O, Fuchs J, Eisenreich W, Boll M (2018) A catalytically versatile benzoyl-CoA reductase, key enzyme in the degradation of methyl- and halobenzoates in denitrifying bacteria. J Biol Chem.
  95. Tijhuis L, van Loosdrecht MCM, Heijnen JJ (1993) A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng 42:509–519CrossRefPubMedPubMedCentralGoogle Scholar
  96. Trautwein K, Kühner S, Wöhlbrand L, Halder T, Kuchta K, Steinbüchel A, Rabus R (2008) Solvent stress response of the denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. Appl Environ Microbiol 74:2267–2274CrossRefPubMedPubMedCentralGoogle Scholar
  97. Trautwein K, Grundmann O, Wöhlbrand L, Eberlein C, Boll M, Rabus R (2012a) Benzoate mediates repression of C4-dicarboxylate utilization in “Aromatoleum aromaticum” EbN1. J Bacteriol 194:518–528CrossRefPubMedPubMedCentralGoogle Scholar
  98. Trautwein K, Lahme S, Wöhlbrand L, Feenders C, Mangelsdorf K, Harder J, Steinbüchel A, Blasius B, Reinhardt R, Rabus R (2012b) Physiological and proteomic adaptation of “Aromatoleum aromaticum” EbN1 to low growth rates in benzoate-limited, anoxic chemostats. J Bacteriol 194:2165–2180CrossRefPubMedPubMedCentralGoogle Scholar
  99. Trautwein K, Wilkes H, Rabus R (2012c) Proteogenomic evidence for β-oxidation of plant-derived 3-phenylpropanoids in “Aromatoleum aromaticum” EbN1. Proteomics 12:1402–1413CrossRefPubMedGoogle Scholar
  100. Umezawa T (2010) The cinnamate/monolignol pathway. Phytochem Rev 9:1–17CrossRefGoogle Scholar
  101. Valderrama JA, Durante-Rodríguez G, Blázquez B, Garciá JL, Carmona M, Díaz E (2012) Bacterial degradation of benzoate. Cross-regulation between aerobic and anaerobic pathways. J Biol Chem 287:10494–10508CrossRefPubMedPubMedCentralGoogle Scholar
  102. Valderrama JA, Shingler V, Carmona M, Díaz E (2014) AccR is a master regulator involved in carbon catabolite repression of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB. J Biol Chem 289:1892–1904CrossRefPubMedPubMedCentralGoogle Scholar
  103. Weidenweber S, Schühle K, Demmer U, Warkentin E, Ermler U, Heider J (2017) Structure of the acetophenone carboxylase core complex: prototype of a new class of ATP-dependent carboxylases/hydrolases. Sci Rep 7:39674CrossRefPubMedPubMedCentralGoogle Scholar
  104. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276CrossRefGoogle Scholar
  105. Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 29. Springer, Heidelberg, pp 1997–2021CrossRefGoogle Scholar
  106. Wischgoll S, Taubert M, Peters F, Jehmlich N, von Bergen M, Boll M (2009) Decarboxylating and nondecarboxylating glutaryl-coenzyme A dehydrogenases in the aromatic metabolism of obligately anaerobic bacteria. J Bacteriol 191:4401–4409CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wöhlbrand L, Rabus R (2009) Development of a genetic system for the denitrifying bacterium ‘Aromatoleum aromaticum’ strain EbN1. J Mol Microbiol Biotechnol 17:41–52CrossRefPubMedPubMedCentralGoogle Scholar
  108. Wöhlbrand L, Kallerhoff B, Lange D, Hufnagel P, Thiermann J, Reinhardt R, Rabus R (2007) Functional proteomic view of metabolic regulation in “Aromatoleum aromaticum” strain EbN1. Proteomics 7:2222–2239CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wöhlbrand L, Wilkes H, Halder T, Rabus R (2008) Anaerobic degradation of p-ethylphenol by “Aromatoleum aromaticum” strain EbN1: pathway, regulation and involved proteins. J Bacteriol 190:5699–5709CrossRefPubMedPubMedCentralGoogle Scholar
  110. Yin Y, Wang Y, Tang W, Song L (2017) Thauera phenolivorans sp. nov., a phenol degrading bacterium isolated from activated sludge. Antonie Van Leeuwenhoek.
  111. Zamarro MT, Martín-Moldes Z, Díaz E (2016) The ICEXTD of Azoarcus sp. CIB, an integrative and conjugative element with aerobic and anaerobic catabolic properties. Environ Microbiol 18:5018–5031CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zink K-G, Rabus R (2010) Stress-induced changes in phospholipids in betaproteobacterium Aromatoleum aromaticum strain EbN1 due to alkylbenzene growth substrates. J Mol Microbiol Biotechnol 18:92–101CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:513–616CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University OldenburgOldenburgGermany
  2. 2.Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations