Silica Aerogels: A Review of Molecular Dynamics Modelling and Characterization of the Structural, Thermal, and Mechanical Properties

  • Jingjie Yeo
  • Zishun Liu
  • Teng Yong Ng
Living reference work entry


Samuel S. Kistler showed that extremely porous silica aerogels can be made from supercritical drying of wet gels. This work, along with subsequent experimental and simulation studies, eventually led to the commercialization of silica aerogels in numerous engineering applications, especially for thermal insulation in aerospace and civil engineering applications. Rapid progress in the synthesis of silica aerogels provided great impetus for characterizing and optimizing their molecular structures. This created significant numerical challenges in understanding their structure-property-function relationship at several hierarchies of length scales. Both fully atomistic and coarse-grained molecular dynamics modeling and simulations have been extensively developed to tackle these challenges. We reviewed the development of new empirical molecular dynamics forcefields, novel methods of generating aerogels’ percolated backbones, and compelling algorithms for characterizing their structural, mechanical, and thermal properties that have resulted in unprecedented insights into silica aerogels. These developments will drive the eventual creation of a comprehensive set of multiscale modeling platforms which can minimize the trials and errors during experimental synthesis and even bring silica aerogels into the fold of the materials-by-design paradigm.


  1. Ackerman WC, Vlachos M, Rouanet S, Fruendt J (2001) Use of surface treated aerogels derived from various silica precursors in translucent insulation panels. J Non Cryst Solids 285:264–271ADSCrossRefGoogle Scholar
  2. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer Science+Business Media, LLC, New YorkCrossRefGoogle Scholar
  3. Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non Cryst Solids 354:4556–4561ADSCrossRefGoogle Scholar
  4. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New YorkzbMATHGoogle Scholar
  5. Benoit C, Rahmani A, Jund P, Jullien R (2001) Numerical study of the dynamic properties of silica aerogels. J Phys Condens Mat 13:5413–5426ADSCrossRefGoogle Scholar
  6. Bhattacharya S, Kieffer J (2005) Fractal dimensions of silica gels generated using reactive molecular dynamics simulations. J Chem Phys 122:094715ADSCrossRefGoogle Scholar
  7. Burchell MJ, Graham G, Kearsley A (2006) Cosmic dust collection in aerogel. Annu Rev Earth Planet Sci 34:385–418ADSCrossRefGoogle Scholar
  8. Campbell T, Kalia RK, Nakano A, Shimojo F, Tsuruta K, Vashishta P, Ogata S (1999) Structural correlations and mechanical behavior in nanophase silica glasses. Phys Rev Lett 82:4018–4021ADSCrossRefGoogle Scholar
  9. Cantin M, Casse M, Koch L, Jouan R, Mestreau P, Roussel D, Bonnin F, Moutel J, Teichner SJ (1974) Silica aerogels used as Cherenkov radiators. Nucl Inst Methods 118:177–182ADSCrossRefGoogle Scholar
  10. Coquil T, Fang J, Pilon L (2011) Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica. Int J Heat Mass Transf 54:4540–4548CrossRefGoogle Scholar
  11. Cotana F, Pisello AL, Moretti E, Buratti C (2014) Multipurpose characterization of glazing systems with silica aerogel: in-field experimental analysis of thermal-energy, lighting and acoustic performance. Build Environ 81:92–102CrossRefGoogle Scholar
  12. Cross J, Goswin R, Gerlach R, Fricke J (1989) Mechanical properties of Sio2 – aerogels. J Physiol Paris 50:C4185–C4190Google Scholar
  13. Duer K, Svendsen S (1998) Monolithic silica aerogel in superinsulating glazings. Sol Energy 63:259–267ADSCrossRefGoogle Scholar
  14. Ebert H-P (2011) Thermal properties of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer New York, New York, pp 537–564CrossRefGoogle Scholar
  15. Ferreiro-Rangel CA, Gelb LD (2013) Investigation of the bulk modulus of silica aerogel using molecular dynamics simulations of a coarse-grained model. J Phys Chem B 117:7095–7105CrossRefGoogle Scholar
  16. Ferreiro-Rangel CA, Gelb LD (2015) Computational study of uniaxial deformations in silica aerogel using a coarse-grained model. J Phys Chem B 119:8640–8650CrossRefGoogle Scholar
  17. Fesmire JE (2006) Aerogel insulation systems for space launch applications. Cryogenics 46:111–117ADSCrossRefGoogle Scholar
  18. Feuston BP, Garofalini SH (1990) Oligomerization in silica sols. J Phys Chem 94:5351–5356CrossRefGoogle Scholar
  19. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic, San DiegozbMATHGoogle Scholar
  20. Fricke J (1988) Aerogels – highly tenuous solids with fascinating properties. J Non Cryst Solids 100:169–173ADSCrossRefGoogle Scholar
  21. Fricke J, Emmerling A (1992) Aerogels. J Am Ceram Soc 75:2027–2036CrossRefGoogle Scholar
  22. Fricke J, Lu X, Wang P, Buttner D, Heinemann U (1992) Optimization of monolithic silica aerogel insulants. Int J Heat Mass Transf 35:2305–2309CrossRefGoogle Scholar
  23. Gao T, Jelle BP, Ihara T, Gustavsen A (2014) Insulating glazing units with silica aerogel granules: the impact of particle size. Appl Energy 128:27–34CrossRefGoogle Scholar
  24. Garofalini S (1983) A molecular dynamics simulation of the vitreous silica surface. J Chem Phys 78:2069–2072ADSCrossRefGoogle Scholar
  25. Garofalini SH, Martin G (1994) Molecular simulations of the polymerization of silicic acid molecules and network formation. J Phys Chem 98:1311–1316CrossRefGoogle Scholar
  26. Garofalini SH, Melman H (1986) Applications of molecular dynamics simulations to sol-gel processing. MRS Proc 73:497CrossRefGoogle Scholar
  27. Gelb LD (2007) Simulating silica aerogels with a coarse-grained flexible model and langevin dynamics. J Phys Chem C 111:15792–15802CrossRefGoogle Scholar
  28. Gelb LD (2011) Simulation and modeling of aerogels using atomistic and mesoscale methods. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York, pp 565–581CrossRefGoogle Scholar
  29. Gonçalves W, Morthomas J, Chantrenne P, Perez M, Foray G, Martin CL (2016) Molecular dynamics simulations of amorphous silica surface properties with truncated Coulomb interactions. J Non Cryst Solids 447:1–8ADSCrossRefGoogle Scholar
  30. Gronauer, M, Kadur, A, Fricke, J (1986) Mechanical and acoustic properties of silica aerogel. Aerogels: proceedings of the first international symposium, Würzburg, Federal Republic of Germany, 23–25 Sept 1985, Springer Berlin Heidelberg, Berlin/Heidelberg, pp 167–173Google Scholar
  31. Gross J, Reichenauer G, Fricke J (1988) Mechanical-properties of Sio2 aerogels. J Phys D Appl Phys 21:1447–1451ADSCrossRefGoogle Scholar
  32. Guissani Y, Guillot B (1996) A numerical investigation of the liquid-vapor coexistence curve of silica. J Chem Phys 104:7633–7644ADSCrossRefGoogle Scholar
  33. Haile J, Johnston I, Mallinckrodt AJ, McKay S (1993) Molecular dynamics simulation: elementary methods. Comput Phys 7:625–625ADSCrossRefGoogle Scholar
  34. Heinemann U, Caps R, Fricke J (1996) Radiation conduction interaction: an investigation on silica aerogels. Int J Heat Mass Transf 39:2115–2130CrossRefGoogle Scholar
  35. Herrmann G, Iden R, Mielke M, Teich F, Ziegler B (1995) On the way to commercial production of silica aerogel. J Non Cryst Solids 186:380–387ADSCrossRefGoogle Scholar
  36. Horbach J, Kob W (1999) Static and dynamic properties of a viscous silica melt. Phys Rev B Condens Matter Mate Phys 60:3169–3181ADSCrossRefGoogle Scholar
  37. Horbach J, Kob W, Binder K (1999) Specific heat of amorphous silica within the harmonic approximation. J Phys Chem B 103:4104–4108CrossRefGoogle Scholar
  38. Hrubesh LW (1998) Aerogel applications. J Non Cryst Solids 225:335–342ADSCrossRefGoogle Scholar
  39. Jelle BP, Baetens R, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energ Buildings 43:761–769CrossRefGoogle Scholar
  40. Jones SM (2006) Aerogel: space exploration applications. J Sol Gel Sci Technol 40:351–357ADSCrossRefGoogle Scholar
  41. Jund P, Jullien R (1999) Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys Rev B Condens Matter Mate Phys 59:13707–13711ADSCrossRefGoogle Scholar
  42. Kharzheev YN (2008) Use of silica aerogels in Cherenkov counters. Phys Part Nucl 39:107–135CrossRefGoogle Scholar
  43. Kieffer J, Angell CA (1988) Generation of fractal structures by negative-pressure rupturing of SiO2 glass. J Non Cryst Solids 106:336–342ADSCrossRefGoogle Scholar
  44. Kieffer J, Bhattacharya S (2008) Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels. J Phys Chem C 112:1764–1771CrossRefGoogle Scholar
  45. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741–741ADSCrossRefGoogle Scholar
  46. Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64CrossRefGoogle Scholar
  47. Koebel MM, Rigacci A, Achard P (2011) Aerogels for superinsulation: a synoptic view. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer New York, New York, pp 607–633CrossRefGoogle Scholar
  48. Kramer GJ, Farragher NP, van Beest BW, van Santen RA (1991) Interatomic force fields for silicas, aluminophosphates, and zeolites: derivation based on ab initio calculations. Phys Rev B Condens Matter Mate Phys 43:5068–5080ADSCrossRefGoogle Scholar
  49. Lei J, Liu Z, Yeo J, Ng TY (2013) Determination of the Young’s modulus of silica aerogels – an analytical-numerical approach. Soft Matter 9:11367–11373ADSCrossRefGoogle Scholar
  50. Lemay JD, Tillotson TM, Hrubesh LW, Pekala RW (1990) Microstructural dependence of aerogel mechanical properties. MRS Proc 180:321CrossRefGoogle Scholar
  51. Liu M, Qiu L, Zheng X, Zhu J, Tang D (2014) Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation. J Appl Phys 116:093503ADSCrossRefGoogle Scholar
  52. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal-conductivity of organic aerogels. J Non Cryst Solids 188:226–234ADSCrossRefGoogle Scholar
  53. Mahajan SS, Subbarayan G, Sammakia BG (2007) Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations. Phys Rev E Stat Nonlin Soft Matter Phys 76:056701ADSCrossRefGoogle Scholar
  54. McGaughey AJH, Kaviany M (2004) Thermal conductivity decomposition and analysis using molecular dynamics simulations part II. Complex silica structures. Int J Heat Mass Transf 47:1799–1816CrossRefGoogle Scholar
  55. Muller-Plathe F, Bordat P (2004) Reverse non-equilibrium molecular dynamics. Springer Berlin Heidelberg, Berlin/HeidelbergCrossRefGoogle Scholar
  56. Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si-O systems using Tersoff parameterization. Comput Mater Sci 39:334–339CrossRefGoogle Scholar
  57. Murillo JSR, Bachlechner ME, Campo FA, Barbero EJ (2010) Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation. J Non Cryst Solids 356:1325–1331ADSCrossRefGoogle Scholar
  58. Nakano A, Bi L, Kalia RK, Vashishta P (1993) Structural correlations in porous silica: molecular dynamics simulation on a parallel computer. Phys Rev Lett 71:85ADSCrossRefGoogle Scholar
  59. Nakano A, Bi LS, Kalia RK, Vashishta P (1994) Molecular-dynamics study of the structural correlation of porous silica with use of a parallel computer. Phys Rev B Condens Matter Mate Phys 49:9441–9452ADSCrossRefGoogle Scholar
  60. Neugebauer A, Chen K, Tang A, Allgeier A, Glicksman LR, Gibson LJ (2014) Thermal conductivity and characterization of compacted, granular silica aerogel. Energ Buildings 79:47–57CrossRefGoogle Scholar
  61. Ng TY, Yeo JJ, Liu ZS (2012) A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing. J Non Cryst Solids 358:1350–1355ADSCrossRefGoogle Scholar
  62. Ng TY, Joshi SC, Yeo J, Liu Z (2016) Effects of nanoporosity on the mechanical properties and applications of aerogels in composite structures. In: Advances in nanocomposites. Springer International Publishing, Gewerbestrasse 11, 6330 Cham, Switzerland pp 97–126Google Scholar
  63. Patil SP, Rege A, Sagardas, Itskov M, Markert B (2017) Mechanics of nanostructured porous silica aerogel resulting from molecular dynamics simulations. J Phys Chem B 121(22):5660–5668CrossRefGoogle Scholar
  64. Pohl PI, Faulon JL, Smith DM (1995) Molecular-dynamics computer-simulations of silica aerogels. J Non Cryst Solids 186:349–355ADSCrossRefGoogle Scholar
  65. Rahmani A, Benoit C, Poussigue G (1994) A fractal model for silica aerogels. J Phys Condens Matter 6:1483ADSCrossRefGoogle Scholar
  66. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  67. Rubin M, Lampert CM (1983) Transparent silica aerogels for window insulation. Sol Energy Mate 7:393–400CrossRefGoogle Scholar
  68. Scherer GW, Smith DM, Qiu X, Anderson JM (1995) Compression of aerogels. J Non Cryst Solids 186:316–320ADSCrossRefGoogle Scholar
  69. Shell MS, Debenedetti PG, Panagiotopoulos AZ (2002) Molecular structural order and anomalies in liquid silica. Phys Rev E Stat Nonlin Soft Matter Phys 66:011202ADSCrossRefGoogle Scholar
  70. Stillinger F, Rahman A (1978) Revised central force potentials for water. J Chem Phys 68:666–670ADSCrossRefGoogle Scholar
  71. Tabata M, Imai E, Yano H, Hashimoto H, Kawai H, Kawaguchi Y, Kobayashi K, Mita H, Okudaira K, Sasaki S, Yabuta H, Yokobori S-i, Yamagishi A (2014) Design of a silica-aerogel-based cosmic dust collector for the Tanpopo mission aboard the International Space Station. Trans Jpn Soc Aeronaut Space Sci, Aerosp Technol Jpn 12:Pk_29–Pk_34Google Scholar
  72. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B Condens Matter Mate Phys 37:6991–7000ADSCrossRefGoogle Scholar
  73. Tillotson TM, Hrubesh LW (1992) Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process. J Non Cryst Solids 145:44–50ADSCrossRefGoogle Scholar
  74. Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61:869–872ADSCrossRefGoogle Scholar
  75. Vacher R, Woignier T, Pelous J, Courtens E (1988a) Structure and self-similarity of silica aerogels. Phys Rev B 37:6500–6503ADSCrossRefGoogle Scholar
  76. Vacher R, Woignier T, Phalippou J, Pelous J, Courtens E (1988b) Fractal structure of base catalyzed and densified silica aerogels. J Non Cryst Solids 106:161–165ADSCrossRefGoogle Scholar
  77. van Beest BW, Kramer GJ, van Santen RA (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64:1955–1958ADSCrossRefGoogle Scholar
  78. Vashishta P, Kalia RK, Rino JP, Ebbsjo I (1990) Interaction potential for SiO2 – a molecular-dynamics study of structural correlations. Phys Rev B Condens Matter Mate Phys 41:12197–12209ADSCrossRefGoogle Scholar
  79. Wei G, Liu Y, Zhang X, Yu F, Du X (2011) Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf 54:2355–2366CrossRefGoogle Scholar
  80. Wittwer V (1989) Translucent insulation for passive solar energy utilization in buildings. Sol & Wind Technol 6:419–426CrossRefGoogle Scholar
  81. Woignier T, Phalippou J (1989) Scaling law variation of the mechanical properties of silica aerogels. J Phys Colloq 50:C4-179–C174-184Google Scholar
  82. Woignier T, Pelous J, Phalippou J, Vacher R, Courtens E (1987) Elastic properties of silica aerogels. J Non Cryst Solids 95:1197–1202ADSCrossRefGoogle Scholar
  83. Woignier T, Phalippou J, Vacher R, Pelous J, Courtens E (1990) Different kinds of fractal structures in silica aerogels. J Non Cryst Solids 121:198–201ADSCrossRefGoogle Scholar
  84. Woignier T, Reynes J, Hafidi Alaoui A, Beurroies I, Phalippou J (1998) Different kinds of structure in aerogels: relationships with the mechanical properties. J Non Cryst Solids 241:45–52ADSCrossRefGoogle Scholar
  85. Woignier T, Primera J, Alaoui A, Etienne P, Despestis F, Calas-Etienne S (2015) Mechanical properties and brittle behavior of silica aerogels. Gels 1:256–275CrossRefGoogle Scholar
  86. Yeo JJ (2014) Modeling and simulation of the structural evolution and thermal properties of ultralight aerogel and 2D materials. Doctoral dissertation, SingaporeGoogle Scholar
  87. Yeo J, Liu Z, Ng T (2013) Enhanced thermal characterization of silica aerogels through molecular dynamics simulation. Model Simul Mate Sci Eng 21:075004ADSCrossRefGoogle Scholar
  88. Zeng JSQ, Stevens PC, Hunt AJ, Grief R, Daehee L (1996) Thin-film-heater thermal conductivity apparatus and measurement of thermal conductivity of silica aerogel. Int J Heat Mass Transf 39:2311–2317CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringTufts UniversityMedfordUSA
  2. 2.Laboratory for Atomistic and Molecular Mechanics (LAMM)/Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
  4. 4.International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anChina
  5. 5.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Section editors and affiliations

  • Markus J. Buehler
    • 1
  • Francisco Martin-Martinez
    • 2
  1. 1.Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations