Advertisement

Fundamental Atomic Insight in Electrocatalysis

  • Alexander Bagger
  • Ivano E. Castelli
  • Martin Hangaard Hansen
  • Jan Rossmeisl
Living reference work entry

Abstract

Electrochemical energy conversion reactions depend on the atomic structure of the interface between the electrode and the electrolyte. In order to make advances in technology, atomic-scale simulations are needed to provide insight and fundamental understanding of the electrocatalytic reactions. Thus electronic structure calculations relevant for electrocatalysis have attracted a lot of attention in the last decade. However, it is not straightforward to translate state of the art simulations into electrocatalysis. As the simulations normally are done at constant number of ions and electrons rather than at constant potential and constant pH, which represent the real physical conditions. In fact, due to this, the electrochemical interface presents one of the frontiers for electronic structure simulations.

In this chapter we describe how standard simulations can provide atomic-scale understanding of electrocatalytic reactions. We introduce the computational version of reference electrodes, which are key in the interpretation of simulations. Furthermore, the reference electrodes are used to create phase diagrams and reaction free energy diagrams for electrocatalytic reactions. The chapter will focus on simulations which can be done without any special implementation of the electronic structure method. This means that we focus on explicit solvent and charge-neutral interfaces. The connection to the electrode potential is introduced in the analysis of the simulations rather than in the simulations themselves.

References

  1. Andreussi O, Dabo I, Marzari N (2012) Revised self-consistent continuum solvation in electronic-structure calculations. J Chem Phys 136(6):064102ADSCrossRefGoogle Scholar
  2. Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J (2017a) Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18:3266–3273CrossRefGoogle Scholar
  3. Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J (2017b) Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal Today 288:74–78CrossRefGoogle Scholar
  4. Björketun ME, Zeng Z, Ahmed R, Tripkovic V, Thygesen KS, Rossmeisl J (2013) Avoiding pitfalls in the modeling of electrochemical interfaces. Chem Phys Lett 555(Supplement C):145–148ADSCrossRefGoogle Scholar
  5. Broqvist P, Panas I, Fridell E, Persson H (2002) NOxStorage on BaO(100) surface from first principles: a two channel scenario. J Phys Chem B 106(1):137–145CrossRefGoogle Scholar
  6. Busch M, Halck NB, Kramm UI, Siahrostami S, Krtil P, Rossmeisl J (2016) Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29:126–135. ElectrocatalysisCrossRefGoogle Scholar
  7. Castelli IE, Thygesen KS, Jacobsen KW (2014) Calculated Pourbaix diagrams of cubic perovskites for water splitting: stability against corrosion. Top Catal 57(1):265–272CrossRefGoogle Scholar
  8. Castelli IE, Man I-C, Soriga S-G, Parvulescu V, Halck NB, Rossmeisl J (2017) Role of the band gap for the interaction energy of coadsorbed fragments. J Phys Chem C 121(34):18608–18614CrossRefGoogle Scholar
  9. Chan K, Nørskov JK (2015) Electrochemical barriers made simple. J Phys Chem Lett 6(14):2663–2668CrossRefGoogle Scholar
  10. Charles MH (1889) Process of reducing aluminium from its fluoride salts by electrolysis, 2 Apr 1889. US Patent 400,664Google Scholar
  11. Chen LD, Urushihara M, Chan K, Nørskov JK (2016) Electric field effects in electrochemical CO2 reduction. ACS Catal 6(10):7133–7139CrossRefGoogle Scholar
  12. Cheng J, Sprik M (2010) Aligning electronic energy levels at the tio2∕h2O interface. Phys Rev B 82:081406Google Scholar
  13. Christensen R, Hansen HA, Vegge T (2015) Identifying systematic DFT errors in catalytic reactions. Catal Sci Technol 5:4946–4949CrossRefGoogle Scholar
  14. Doyle AD, Montoya JH, Vojvodic A (2015) Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 7(5):738–742CrossRefGoogle Scholar
  15. Dupont C, Andreussi O, Marzari N (2013) Self-consistent continuum solvation (SCCS): the case of charged systems. J Chem Phys 139(21):214110ADSCrossRefGoogle Scholar
  16. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Hakkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter 22(25):253202ADSGoogle Scholar
  17. Fernández EM, Moses PG, Toftelund A, Hansen HA, Martínez JI, Abild-Pedersen F, Kleis J, Hinnemann B, Rossmeisl J, Bligaard T, Nørskov JK (2008) Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed 47(25):4683–4686CrossRefGoogle Scholar
  18. Halck NB, Petrykin V, Krtil P, Rossmeisl J (2014) Beyond the volcano limitations in electrocatalysis – oxygen evolution reaction. Phys Chem Chem Phys 16:13682–13688CrossRefGoogle Scholar
  19. Hamada I, Sugino O, Bonnet N, Otani M (2013) Improved modeling of electrified interfaces using the effective screening medium method. Phys Rev B 88:155427Google Scholar
  20. Hansen MH, Rossmeisl J (2016) pH in grand canonical statistics of an electrochemical interface. J Phys Chem C 120(51):29135–29143CrossRefGoogle Scholar
  21. Hansen HA, Rossmeisl J, Nørskov JK (2008) Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys 10(25):3722CrossRefGoogle Scholar
  22. Hansen MH, Nilsson A, Rossmeisl J (2017) Modelling pH and potential in dynamic structures of the water/Pt(111) interface on the atomic scale. Phys Chem Chem Phys 19:23505–23514CrossRefGoogle Scholar
  23. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985ADSCrossRefGoogle Scholar
  24. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904ADSCrossRefGoogle Scholar
  25. Herron JA, Morikawa Y, Mavrikakis M (2016) Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces. Proc Natl Acad Sci USA 113:E4937–E4945ADSCrossRefGoogle Scholar
  26. Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc Faraday Trans 85:2309–2326CrossRefGoogle Scholar
  27. Hu Z, Metiu H (2012) Halogen adsorption on CeO2: the role of Lewis acid-base pairing. J Phys Chem C 116(11):6664–6671CrossRefGoogle Scholar
  28. Jinnouchi R, Anderson AB (2008a) Aqueous and surface redox potentials from self-consistently determined Gibbs energies. J Phys Chem C 112(24):8747–8750CrossRefGoogle Scholar
  29. Jinnouchi R, Anderson AB (2008b) Electronic structure calculations of liquid-solid interfaces: combination of density functional theory and modified Poisson-Boltzmann theory. Phys Rev B 77:245417Google Scholar
  30. Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations, edited by: Bruce J Berne (Columbia University), Giovanni Ciccotti (Universita Roma “La Sapienza”), and David F Coker (Boston University), World Scientific, pp 385–404Google Scholar
  31. Ju W, Bagger A, Hao G-P, Varela AS, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J Strasser P, (2017) Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat Commun, 8(944):2041–1723Google Scholar
  32. Karlberg GS, Rossmeisl J, Norskov JK (2007a) Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Phys Chem Chem Phys 9:5158–5161CrossRefGoogle Scholar
  33. Karlberg GS, Jaramillo TF, Skúlason E, Rossmeisl J, Bligaard T, Nørskov JK (2007b) Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys Rev Lett 99:126101Google Scholar
  34. Kötz ER, Neff H, Müller K (1986) A UPS, XPS and work function study of emersed silver, platinum and gold electrodes. J Electroanal Chem Interfacial Electrochem 215(1):331–344CrossRefGoogle Scholar
  35. Larentzos JP, Criscenti LJ (2008) A molecular dynamics study of alkaline earth metal-chloride complexation in aqueous solution. J Phys Chem B 112(45):14243–14250CrossRefGoogle Scholar
  36. Larsen AH, Vanin M, Mortensen JJ, Thygesen KS, Jacobsen KW (2009) Localized atomic basis set in the projector augmented wave method. Phys Rev B 80(19):195112Google Scholar
  37. Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dulak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Jensen PB, Kermode J, Kitchin JR, Kolsbjerg EL, Kubal J, Kaasbjerg K, Lysgaard S, Maronsson JB, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW (2017) The atomic simulation environment—a python library for working with atoms. J Phys Condens Matter 29(27):273002Google Scholar
  38. Li B, Metiu H (2012) Does halogen adsorption activate the oxygen atom on an oxide surface? I. A study of Br2 and HBr adsorption on La2O3 and La2O3 doped with Mg or Zr. J Phys Chem C 116(6):4137–4148Google Scholar
  39. Liang T, Cheng Y-T, Nie X, Luo W, Asthagiri A, Janik MJ, Andrews E, Flake J, Sinnott SB (2014) Molecular dynamics simulations of CO2 reduction on Cu(111) and Cu/ZnO(1010) using charge optimized many body potentials. Catal Commun 52(Supplement C):84–87CrossRefGoogle Scholar
  40. Liu X, Xiao J, Peng H, Hong X, Chan K, Nørskov JK (2017) Understanding trends in electrochemical carbon dioxide reduction rates. Nat Commun 8:15438ADSCrossRefGoogle Scholar
  41. Lozovoi AY, Alavi A, Kohanoff J, Lynden-Bell RM (2001) Ab initio simulation of charged slabs at constant chemical potential. J Chem Phys 115(4):1661–1669ADSCrossRefGoogle Scholar
  42. Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165CrossRefGoogle Scholar
  43. Marković NM, Schmidt TJ, Stamenković V, Ross PN (2001) Oxygen reduction reaction on pt and pt bimetallic surfaces: a selective review. Fuel Cells 1(2):105–116CrossRefGoogle Scholar
  44. Ménétrey M, Markovits A, Minot C (2007) Adsorption of chlorine and oxygen atoms on clean and defective rutile-TiO2 (110) and MgO (100) surfaces. J Mol Struct Theochem 808(1–3):71–79CrossRefGoogle Scholar
  45. Merlet C, Limmer DT, Salanne M, van Roij R, Madden PA, Chandler D, Rotenberg B (2014) The electric double layer has a life of its own. J Phys Chem C 118(32):18291–18298CrossRefGoogle Scholar
  46. Metiu H, Chrétien S, Hu Z, Li B, Sun X (2012) Chemistry of Lewis acid-base pairs on oxide surfaces. J Phys Chem C 116(19):10439–10450CrossRefGoogle Scholar
  47. Mistry H, Choi Y-W, Bagger A, Scholten F, Bonifacio C, Sinev I, Divins NJ, Zegkinoglou I, Jeon HS, Kisslinger K, Stach EA, Yang JC, Rossmeisl J, Cuenya BR (2017) Enhanced carbon dioxide electroreduction to carbon monoxide over defect rich plasma-activated silver catalysts. Angewandte Chemie International EditionGoogle Scholar
  48. Montoya JH, Tsai C, Vojvodic A, Nørskov JK (2015) The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8(13):2180–2186CrossRefGoogle Scholar
  49. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method. Phys Rev B 71(3):035109ADSCrossRefGoogle Scholar
  50. Nie X, Luo W, Janik MJ, Asthagiri A (2014) Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J Catal 312(Supplement C):108–122CrossRefGoogle Scholar
  51. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. Electrochem Soc J 152(2):J23–J26CrossRefGoogle Scholar
  52. Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T (2014) Fundamental concepts in heterogeneous catalysis. Wiley, HobokenCrossRefGoogle Scholar
  53. Persson KA, Waldwick B, Lazic P, Ceder G (2012) Prediction of solid-aqueous equilibria: scheme to combine first-principles calculations of solids with experimental aqueous states. Phys Rev B 85:235438ADSCrossRefGoogle Scholar
  54. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315CrossRefGoogle Scholar
  55. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Pergamon Press: Oxford, London, Edinburgh, New York, Toronto, Paris, FrankfurtGoogle Scholar
  56. Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys Rev B 65:035406ADSCrossRefGoogle Scholar
  57. Reuter K, Scheffler M (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys Rev Lett 90:046103ADSCrossRefGoogle Scholar
  58. Rossmeisl J, Nørskov JK, Taylor CD, Janik MJ, Neurock M (2006) Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J Phys Chem B 110(43):21833–21839CrossRefGoogle Scholar
  59. Rossmeisl J, Skulason E, Björketun ME, Tripkovic V, Nørskov JK (2008) Modeling the electrified solid-liquid interface. Chem Phys Lett 466(1):68–71ADSCrossRefGoogle Scholar
  60. Rossmeisl J, Karlberg GS, Jaramillo T, Nørskov JK (2009) Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss 140:337–346ADSCrossRefGoogle Scholar
  61. Rossmeisl J, Chan K, Ahmed R, Tripkovic V, Björketun ME (2013) pH in atomic scale simulations of electrochemical interfaces. Phys Chem Chem Phys 15:10321–10325CrossRefGoogle Scholar
  62. Sakong S, Gross A (2016) The importance of the electrochemical environment in the electro-oxidation of methanol on Pt(111). ACS Catal 6(8):5575–5586CrossRefGoogle Scholar
  63. Schnur S, Groß A (2009) Properties of metal-water interfaces studied from first principles. New J Phys 11(12):125003CrossRefGoogle Scholar
  64. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998CrossRefGoogle Scholar
  65. Sergeev AV, Chertovich AV, Itkis DM, Sen A, Gross A, Khokhlov AR (2017) Electrode/electrolyte interface in the Li-O2 battery: insight from molecular dynamics study. J Phys Chem C 121(27):14463–14469CrossRefGoogle Scholar
  66. Shi C, Chan K, Yoo JS, Nørskov JK (2016) Barriers of electrochemical CO2 reduction on transition metals. Org Process Res Dev 20(8):1424–1430CrossRefGoogle Scholar
  67. Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IEL, Rossmeisl J (2013) Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater 12(12):1137–1143ADSCrossRefGoogle Scholar
  68. Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Norskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the pt(111) electrode. Phys Chem Chem Phys 9:3241–3250CrossRefGoogle Scholar
  69. Skulason E, Jonsson H, Nørskov JK, Bligaard T (2009) Electro-catalytic reactions using density functional theory calculations. PhD thesis, Technical University of Denmark (DTU), 10Google Scholar
  70. Skulason E, Tripkovic V, Björketun ME, Gudmundsdottir S, Karlberg G, Rossmeisl J, Bligaard T, Jonsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114(42):18182–18197CrossRefGoogle Scholar
  71. Spohr E (1989) Computer simulation of the water/platinum interface. J Phys Chem 93(16):6171–6180CrossRefGoogle Scholar
  72. Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas AP, Stamenkovic VR, Markovic NM (2013) Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 5:300–306CrossRefGoogle Scholar
  73. Trasatti S (1986) The absolute electrode potential: an explanatory note (recommendations 1986). J Electroanal Chem Interfacial Electrochem 209(2):417–428CrossRefGoogle Scholar
  74. Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK (2012) Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal 2(8):1654–1660CrossRefGoogle Scholar
  75. Yeh K-Y, Janik MJ, Maranas JK (2013) Molecular dynamics simulations of an electrified water/Pt(111) interface using point charge dissociative water. Electrochim Acta 101(Supplement C):308–325CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Bagger
    • 1
  • Ivano E. Castelli
    • 2
  • Martin Hangaard Hansen
    • 3
  • Jan Rossmeisl
    • 1
  1. 1.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Energy Conversion and StorageTechnical University of DenmarkLyngbyDenmark
  3. 3.SUNCAT Center for Interface Science and CatalysisSLAC National Accelerator LaboratoryCaliforniaUSA

Section editors and affiliations

  • Horia Metiu
    • 1
  • Karsten Reuter
    • 2
  1. 1.Department of Chemistry & BiochemistryUniversity of California at Santa BarbaraSanta BarbaraUSA
  2. 2.Theoretische ChemieTechnical UniversityMünchenGermany

Personalised recommendations