Multiscale Modeling of Blood Flow-Mediated Platelet Thrombosis

Living reference work entry


The blood coagulation cascade that leads to thrombus formation may be initiated by flow-induced platelet activation, which prompts clot formation in prosthetic cardiovascular devices and in arterial disease processes. Upon activation, platelets undergo complex morphological changes of filopodia formation that play a major role in aggregation and attachment to surfaces. Numerical simulations based on continuum approaches fail to capture such molecular-scale mechano-transduction processes. Utilizing molecular dynamics (MD) to model these complex processes across the scales is computationally prohibitive. We describe multiscale numerical methodologies that integrate four key components of blood clotting, namely, blood rheology, cell mechanics, coagulation kinetics and transport of species, and platelet adhesive dynamics across a wide range of spatiotemporal scales. Whereas mechanics of binding/unbinding for single-molecule receptor-ligand complexes can be simulated by molecular dynamics (MD), the mechanical structure of platelets in blood flow and their interaction with flow-induced stresses that may lead to their activation can be efficiently described by a model at coarser scales, using numerical approaches such as coarse-grained molecular dynamics (CGMD). Additionally, CGMD provides an excellent platform to inform other coarser-scale models in a bottom-up approach in the multiscale hierarchy. The microenvironment of most biological systems such as coagulation normally involves a large number of cells, e.g., blood cells suspended in plasma, limiting the utility of CGMD at the larger transport scales of blood flow. However, dissipative particle dynamics (DPD), along with its sub-models such as energy conserving and transport DPD, provides a very flexible platform for scaling up these mesoscopic systems. At the macroscopic top scales of the vasculature and cardiovascular devices, simulating blood and tissues using continuum-based methods becomes viable and efficient. However, the challenge of interfacing these larger transport scales with the orders of magnitude smaller spatiotemporal scales that characterize blood coagulation, and given the issue of the slow-dynamic timescales of biological processes, makes long-term simulations of such systems computationally prohibitive. In this chapter, we describe various numerical remedies based on these methodologies that facilitate overcoming this multiscale simulation challenge.


Multiscale Modeling Coarse-grained Molecular Dynamics (CGMD) Dissipative Particle Dynamics (DPD) Mechano-transduction Process Flow-induced Stresses 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NIH grants U01HL116323 (Yazdani, A.), NHLBI R21HL096930-01, NIBIB Quantum U01EB012487, and NHLBI U01HL131052 (Bluestein, D.) and XSEDE grants DMS140019, DMS150011 (Zhang, P.), and DMS140007 (Yazdani, A.).


  1. Albert R, Barabasi AL, Carle N, Dougherty A (1998) Driven interfaces in disordered media: determination of universality classes from experimental data. Phys Rev Lett 81(14):2926–2929ADSCrossRefGoogle Scholar
  2. Alon R, Chen S, Puri KD, Finger EB, Springer TA (1997) The kinetics of l-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol 138(5):1169–1180CrossRefGoogle Scholar
  3. Alon R, Chen S, Fuhlbrigge R, Puri KD, Springer TA (1998) The kinetics and shear threshold of transient and rolling interactions of l-selectin with its ligand on leukocytes. Proc Natl Acad Sci 95(20):11631–11636ADSCrossRefGoogle Scholar
  4. Bell GI (1978) Models for specific adhesion of cells to cells. Science 200(4342):618–627ADSCrossRefGoogle Scholar
  5. Berk D, Evans E (1991) Detachment of agglutinin-bonded red-blood-cells. 3. Mechanical analysis for large contact areas. Biophys J 59(4):861–872CrossRefGoogle Scholar
  6. Bluestein D, Soares JS, Zhang P, Gao C, Pothapragada S, Zhang N, Slepian MJ, Deng Y (2014) Multiscale modeling of flow induced thrombogenicity with dissipative particle dynamics and molecular dynamics. J Med Devices 8(2):0209541–0209542CrossRefGoogle Scholar
  7. Boek ES, Coveney PV, Lekkerkerker HNW (1996) Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics. J Phys Condens Matter 8(47):9509–9512ADSCrossRefGoogle Scholar
  8. Boryczko K, Dzwinel W, Yuen DA (2003) Dynamical clustering of red blood cells in capillary vessels. J Mol Model 9(1):16–33CrossRefGoogle Scholar
  9. Boryczko K, Dzwinel W, Yuen DA (2004) Modeling fibrin aggregation in blood flow with discrete-particles. Comput Methods Prog Biomed 75(3):181–194CrossRefGoogle Scholar
  10. Chen J, Abdelgawad M, Yu L, Shakiba N, Chien WY, Lu Z, Geddie WR, Jewett MA, Sun Y (2011) Electrodeformation for single cell mechanical characterization. J Micromech Microeng 21(5):054012CrossRefGoogle Scholar
  11. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821ADSCrossRefGoogle Scholar
  12. Dembo M, Torney DC, Saxman K, Hammer D (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc London Ser B Biol Sci 234(1274):55–83ADSCrossRefGoogle Scholar
  13. Dong C, Cao J, Struble EJ, Lipowsky HH (1999) Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann Biomed Eng 27(3):298–312CrossRefGoogle Scholar
  14. Dwinzel W, Yuen DA, Boryczko K (2002) Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model. J Mol Model 8(1):33–43CrossRefGoogle Scholar
  15. Dzwinel W, Boryczko K, Yuen DA (2003) A discrete-particle model of blood dynamics in capillary vessels. J Colloid Interface Sci 258(1):163–173ADSzbMATHCrossRefGoogle Scholar
  16. Espanol P (1998) Fluid particle model. Phys Rev E 57(3):2930–2948ADSCrossRefGoogle Scholar
  17. Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191ADSCrossRefGoogle Scholar
  18. Evans EA (1985a) Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges. Biophy J 48(1):175–183Google Scholar
  19. Evans EA (1985b) Detailed mechanics of membrane-membrane adhesion and separation. II. Discrete kinetically trapped molecular cross-bridges. Biophys J 48(1):185–192Google Scholar
  20. Fedosov DA, Karniadakis GE (2009) Triple-decker: interfacing atomistic-mesoscopic-continuum flow regimes. J Comput Phys 228(4):1157–1171ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. Fogelson AL, Neeves KB (2015) Fluid mechanics of blood clot formation. Ann Rev Fluid Mech 47:377–403ADSMathSciNetCrossRefGoogle Scholar
  22. Fogelson AL, Tania N (2005) Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation. Pathophysiol Haemost Thromb 34(2–3):91–108CrossRefGoogle Scholar
  23. Gao C, Zhang P, Marom G, Deng YF, Bluestein D (2017) Reducing the effects of compressibility in DPD-based blood flow simulations through severe stenotic microchannels. J Comput Phys 335:812–827ADSMathSciNetCrossRefGoogle Scholar
  24. Grinberg L, Fedosov DA, Karniadakis GE (2013) Parallel multiscale simulations of a brain aneurysm. J Comput Phys 244:131–147ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. Grinberg L, Deng M, Karniadakis GE, Yakhot A (2014) Window proper orthogonal decomposition: application to continuum and atomistic data. In: Reduced order methods for modeling and computational reduction. Springer, Cham, pp 275–303zbMATHGoogle Scholar
  26. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435ADSCrossRefGoogle Scholar
  27. Grubmüller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271(5251):997–999ADSCrossRefGoogle Scholar
  28. Hammer DA, Apte SM (1992) Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J 63(1):35–57CrossRefGoogle Scholar
  29. Hammer DA, Lauffenburger DA (1987) A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys J 52(3):475–87CrossRefGoogle Scholar
  30. Han G, Deng Y, Glimm J, Martyna G (2007) Error and timing analysis of multiple time-step integration methods for molecular dynamics. Comput Phys Commun 176(4):271–291ADSzbMATHCrossRefGoogle Scholar
  31. Hou TY, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134(1):169–189ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. Jackson SP (2007) The growing complexity of platelet aggregation. Blood 109(12):5087–95CrossRefGoogle Scholar
  33. Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc London Ser A 102(715):161–179ADSzbMATHCrossRefGoogle Scholar
  34. Keaveny EE, Pivkin IV, Maxey M, Karniadakis GE (2005) A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows. J Chem Phys 123(10):104107ADSCrossRefGoogle Scholar
  35. Kechagia PE, Tsimpanogiannis IN, Yortsos YC, Lichtner PC (2002) On the upscaling of reaction-transport processes in porous media with fast or finite kinetics. Chem Eng Sci 57(13):2565–2577CrossRefGoogle Scholar
  36. Kim J, Hudson NE, Springer TA (2015) Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases. Proc Natl Acad Sci 112(15):4648–4653ADSCrossRefGoogle Scholar
  37. Koplik J, Banavar JR (1995a) Continuum deductions from molecular hydrodynamics. Ann Rev Fluid Mech 27:257–292ADSCrossRefGoogle Scholar
  38. Koplik J, Banavar JR (1995b) Corner flow in the sliding plate problem. Phys Fluids 7(12):3118–3125ADSzbMATHCrossRefGoogle Scholar
  39. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL (1996) Platelets and shear stress. Blood 88(5):1525–1541Google Scholar
  40. Ladd AJC, Verberg R (2001) Lattice-Boltzmann simulations of particle-fluid suspensions. J Statist Phys 104(5–6):1191–1251ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. Lauffenburger DA, Linderman J, Berkowitz L (1987) Analysis of mammalian cell growth factor receptor dynamics. Ann N Y Acad Sci 506:147–62ADSCrossRefGoogle Scholar
  42. Leung SL, Lu Y, Bluestein D, Slepian MJ (2015) Dielectrophoresis-mediated electrodeformation as a means of determining individual platelet stiffness. Ann Biomed Eng 44(4):903–913CrossRefGoogle Scholar
  43. Li Z, Yazdani A, Tartakovsky A, Karniadakis GE (2015) Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. J Chem Phys 143(1):014101ADSCrossRefGoogle Scholar
  44. Linderman JJ, Lauffenburger DA (1986) Analysis of intracellular receptor/ligand sorting. Calculation of mean surface and bulk diffusion times within a sphere. Biophys J 50(2):295–305CrossRefGoogle Scholar
  45. Linderman JJ, Lauffenburger DA (1988) Analysis of intracellular receptor/ligand sorting in endosomes. J Theoret Biol 132(2):203–245MathSciNetCrossRefGoogle Scholar
  46. Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP (2007) Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109(2):566–576CrossRefGoogle Scholar
  47. Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34(1):57–64zbMATHGoogle Scholar
  48. Moulton JD, Dendy JE, Hyman JM (1998) The black box multigrid numerical homogenization algorithm. J Comput Phys 142(1):80–108ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. N’Dri NA, Shyy W, Tran-Son-Tay R (2003) Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys J 85(4):2273–2286CrossRefGoogle Scholar
  50. Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15(6):665–673CrossRefGoogle Scholar
  51. Pivkin IV, Karniadakis GE (2005) A new method to impose no-slip boundary conditions in dissipative particle dynamics. J Comput Phys 207(1):114–128ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. Pivkin IV, Karniadakis GE (2006) Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. J Chem Phys 124(18):184101ADSCrossRefGoogle Scholar
  53. Pivkin IV, Richardson PD, Karniadakis G (2006) Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc Natl Acad Sci 103(46):17164–17169ADSCrossRefGoogle Scholar
  54. Pothapragada S, Zhang P, Sheriff J, Livelli M, Slepian MJ, Deng Y, Bluestein D (2015) A phenomenological particle-based platelet model for simulating filopodia formation during early activation. Int J Numer Methods Biomed Eng 31(3):e02702CrossRefGoogle Scholar
  55. Qian TZ, Wang XP (2005) Driven cavity flow: from molecular dynamics to continuum hydrodynamics. Multiscale Model Simul 3(4):749–763MathSciNetzbMATHCrossRefGoogle Scholar
  56. Revenga M, Zuniga I, Espanol P (1999) Boundary conditions in dissipative particle dynamics. Comput Phys Commun 122:309–311ADSCrossRefGoogle Scholar
  57. Schneider S, Nuschele S, Wixforth A, Gorzelanny C, Alexander-Katz A, Netz R, Schneider M (2007) Shear-induced unfolding triggers adhesion of von willebrand factor fibers. Proc Natl Acad Sci 104(19):7899–7903ADSCrossRefGoogle Scholar
  58. Serrano M, Espanol P (2001) Thermodynamically consistent mesoscopic fluid particle model. Phys Rev E 64(4 Pt 2):046115ADSCrossRefGoogle Scholar
  59. Sheriff J, Soares JS, Xenos M, Jesty J, Bluestein D (2013) Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann Biomed Eng 41(6):1279–1296CrossRefGoogle Scholar
  60. Shyy W, Francois M, Udaykumar H, N’Dri N, Tran-Son-Tay R (2001) Moving boundaries in micro-scale biofluid dynamics. Appl Mech Rev 5:405–453ADSCrossRefGoogle Scholar
  61. Skalak R, Keller SR, Secomb TW (1981a) Mechanics of blood-flow. J Biomech Eng 103(2): 102–115CrossRefGoogle Scholar
  62. Skalak R, Zarda PR, Jan KM, Chien S (1981b) Mechanics of rouleau formation. Biophys J 35(3):771–781CrossRefGoogle Scholar
  63. Skalak R, Ozkaya N, Skalak TC (1989) Biofluid mechanics. Ann Rev Fluid Mech 21:167–204ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. Skeel RD, Izaguirre JA (2002) An impulse integrator for Langevin dynamics. Mol Phys 100(24):3885–3891ADSCrossRefGoogle Scholar
  65. Soddemann T, Dnweg B, Kremer K (2003) Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys Rev E 68(4):046702ADSCrossRefGoogle Scholar
  66. Sorensen EN, Burgreen GW, Wagner WR, Antaki JF (1999) Computational simulation of platelet deposition and activation: I. Model development and properties. Ann Biomed Eng 27(4): 436–448CrossRefGoogle Scholar
  67. Springer TA (2014) Von willebrand factor, jedi knight of the bloodstream. Blood 124(9): 1412–1425CrossRefGoogle Scholar
  68. Sweet CR, Chatterjee S, Xu Z, Bisordi K, Rosen ED, Alber M (2011) Modelling platelet-blood flow interaction using the subcellular element Langevin method. J R Soc Interface 8(65): 1760–1771CrossRefGoogle Scholar
  69. Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2(3):367–450MathSciNetzbMATHGoogle Scholar
  70. Weiss L (1990) Metastatic inefficiency. Adv Cancer Res 54:159–211ADSCrossRefGoogle Scholar
  71. Xu Z, Lioi J, Mu J, Kamocka MM, Liu X, Chen DZ, Rosen ED, Alber M (2010) A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys J 98(9):1723–1732CrossRefGoogle Scholar
  72. Yazdani A, Li H, Humphrey JD, Karniadakis GE (2017) A general shear-dependent model for thrombus formation. PLoS Comput Biol 13(1):e1005291ADSCrossRefGoogle Scholar
  73. Zhang P, Gao C, Zhang N, Slepian MJ, Deng Y, Bluestein D (2014) Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell Mol Bioeng 7(4):552–574CrossRefGoogle Scholar
  74. Zhang P, Zhang N, Deng Y, Bluestein D (2015) A multiple time stepping algorithm for efficient multiscale modeling of platelets flowing in blood plasma. J Comput Phys 284:668–686ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. Zhang P, Zhang N, Gao C, Zhang L, Gao Y, Deng Y, Bluestein D (2016) Scalability test of multiscale fluid-platelet model for three top supercomputers. Comput Phys Commun 204: 132–140ADSCrossRefGoogle Scholar
  76. Zhang P, Zhang L, Slepian MJ, Deng Y, Bluestein D (2017) A multiscale biomechanical model of platelets: correlating with in-vitro results. J Biomech 50:26–33CrossRefGoogle Scholar
  77. Zhu C (2000) Kinetics and mechanics of cell adhesion. J Biomech 33(1):23–33CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA
  3. 3.Department of Applied Mathematics and StatisticsStony Brook UniversityStony BrookUSA
  4. 4.Department of Medicine, Biomedical Engineering DepartmentUniversity of ArizonaTucsonUSA

Section editors and affiliations

  • Ming Dao
    • 1
  • George E Karniadakis
    • 2
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations