Advertisement

First-Principles Modeling of Interface Effects in Oxides

  • Alexander A. DemkovEmail author
  • Kurt D. Fredrickson
  • Hosung Seo
  • Andrew O’Hara
Living reference work entry

Abstract

This work is an attempt to provide a self-contained introduction to the field of atomic modeling of oxide interfaces, focusing primarily on the first-principles modeling techniques based on density functional theory. By way of introduction, a brief description of common oxides and their technological applications are included. We then discuss the first principles methods that have proven effective in dealing with oxide-based interface problems, including common techniques of building structural models. Examples of validating the atomistic model of an interface experimentally are given along with predictions of interface properties. We conclude with a brief summary of the field and the remaining challenges it faces.

Notes

Acknowledgments

We thank Agham Posadas for many insightful discussions and critical reading of the manuscript. This work is supported in part by the Air Force Office of Scientific Research under Grants FA9550–12–10494 and FA9550-18-1-0053. Hosung Seo was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1C1B6008980).

References

  1. Bengtsson L (1999) Dipole correction for surface supercell calculations. Phys Rev B 59:12301–12304.  https://doi.org/10.1103/PhysRevB.59.12301ADSCrossRefGoogle Scholar
  2. Björneholm O, Hansen MH, Hodgson A, Liu L-M, Limmer DT, Michaelides A, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz M-M, Werner J, Bluhm H (2016) Water at interfaces. Chem Rev 116:7698–7726.  https://doi.org/10.1021/acs.chemrev.6b00045CrossRefGoogle Scholar
  3. Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979.  https://doi.org/10.1103/PhysRevB.50.17953ADSCrossRefGoogle Scholar
  4. Born M, Oppenheimer R (1927) Zur quantentheorie der molekeln. Ann Phys 20:457–484.  https://doi.org/10.1002/andp.19273892002CrossRefzbMATHGoogle Scholar
  5. Boys SF (1950) Electronic wave function I. A general method of calculation for the stationary states of any molecular system. Proc R Soc Lond A200:542–554.  https://doi.org/10.1098/rspa.1950.0036ADSCrossRefzbMATHGoogle Scholar
  6. Cai Y, Zhang G, Zhang Y-W (2014) Layer-dependent band alignment and work function of few-layer phosphorene. Sci Rep 4:6677.  https://doi.org/10.1038/srep06677ADSCrossRefGoogle Scholar
  7. Carr RG, Somorjai GA (1981) Hydrogen production from photolysis of steam adsorbed onto platinized SrTiO3. Nature 290:576–577.  https://doi.org/10.1038/290576a0ADSCrossRefGoogle Scholar
  8. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569.  https://doi.org/10.1103/PhysRevLett.45.566ADSCrossRefGoogle Scholar
  9. Chakhalian J, Freeland JW, Millis AJ, Panagopoulos C, Rondinelli JM (2014) Emergent properties in plane view: strong correlations at oxide interfaces. Rev Mod Phys 86:1189–1202.  https://doi.org/10.1103/RevModPhys.86.1189ADSCrossRefGoogle Scholar
  10. Chambers SA (2010) Epitaxial growth and properties of doped transition metal and complex oxide filmes. Adv Mater 22:219–248.  https://doi.org/10.1002/adma.200901867CrossRefGoogle Scholar
  11. Chelikowsky JR, Troullier N, Saad Y (1994a) Finite-difference-pseudopotential method: electronic structure calculations without a basis. Phys Rev Lett 72:1240–1243.  https://doi.org/10.1103/PhysRevLett.72.1240ADSCrossRefGoogle Scholar
  12. Chelikowsky JR, Troullier N, Wu K, Saad Y (1994b) Higher-order finite-difference pseudopotential method: an application to diatomic molecules. Phys Rev B 50:11355–11364.  https://doi.org/10.1103/PhysRevB.50.11355ADSCrossRefGoogle Scholar
  13. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570.  https://doi.org/10.1021/cr1001645CrossRefGoogle Scholar
  14. Choi M, Posadas AB, Seo H, Hatch RC, Demkov AA (2013a) Charge transfer in Sr Zintl template on Si(001). Appl Phys Lett 102:031604.  https://doi.org/10.1063/1.4788916ADSCrossRefGoogle Scholar
  15. Choi M, Janotti A, Van de Walle CG (2013b) Native point defects in LaAlO3: a hybrid functional study. Phys Rev B 88:214117.  https://doi.org/10.1103/PhysRevB.88.214117ADSCrossRefGoogle Scholar
  16. Demkov AA (2006) Thermodynamic stability and band alignment at a metal high-k dielectric interface. Phys Rev B 74:085310.  https://doi.org/10.1103/PhysRevB.74.085310ADSCrossRefGoogle Scholar
  17. Dreizler RM, Gross EKU (1990) Density functional theory: an approach to the quantum many-body problem. Springer, New YorkCrossRefGoogle Scholar
  18. Dudarev SL, Button GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505–1509.  https://doi.org/10.1103/PhysRevB.57.1505ADSCrossRefGoogle Scholar
  19. Engel E, Dreizler RM (2011) Density functional theory: an advanced course. Springer, New YorkCrossRefGoogle Scholar
  20. Fiolhais C, Nogueira F, Marques M (eds) (2003) A primer in density functional theory. Springer, New YorkGoogle Scholar
  21. Flores F, Tejedor C (1979) Energy barriers and interface states at heterojunctions. J Phys C Solid State 12:731–749.  https://doi.org/10.1088/0022-3719/12/4/018ADSCrossRefGoogle Scholar
  22. Fredrickson KD, Demkov AA (2015) Switchable conductivity at the ferroelectric interface: nonpolar oxides. Phys Rev B 91:115126.  https://doi.org/10.1103/PhysRevB.91.115126ADSCrossRefGoogle Scholar
  23. Fredrickson KD, Demkov AA (2016) Spin-polarized, orbital-selected hole gas at the EuO/Pt interface. J Appl Phys 119:095309.  https://doi.org/10.1063/1.4942837ADSCrossRefGoogle Scholar
  24. Fredrickson KD, Posadas AB, Demkov AA, Dubourdieu C, Bruley J (2013) Wetting at the BaTiO3/Pt interface. J Appl Phys 113:184102.  https://doi.org/10.1063/1.4803705ADSCrossRefGoogle Scholar
  25. Fredrickson KD, Ponath P, Posadas AB, McCartney MR, Aoki T, Smith DJ, Demkov AA (2014) Atomic and electronic structure of the ferroelectric BaTiO3/Ge(001) interface. Appl Phys Lett 104:242908.  https://doi.org/10.1063/1.4883883ADSCrossRefGoogle Scholar
  26. Fuchs D, Pinta C, Schwartz T, Schweiss P, Nagel P, Schuppler S, Schneider R, Merz M, Roth G, Löhneysen H (2007a) Ferromagnetic order in epitaxially strained LaCoO3 thin films. Phys Rev B 75:144402.  https://doi.org/10.1103/PhysRevB.75.144402ADSCrossRefGoogle Scholar
  27. Fuchs F, Furthmüller J, Bechstedt F, Shishkin M, Kresse G (2007b) Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys Rev B 76:115109.  https://doi.org/10.1103/PhysRevB.76.115109ADSCrossRefGoogle Scholar
  28. Fuchs D, Arac E, Pinta C, Schuppler S, Schneider R, Löhneysen H (2008) Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain. Phys Rev B 77:014434.  https://doi.org/10.1103/PhysRevB.77.014434ADSCrossRefGoogle Scholar
  29. Gao L, Yalon E, Chew AR, Deshmukh S, Salleo A, Pop E, Demkov AA (2017) Effect of oxygen vacancies and strain on the phonon spectrum of HfO2 thin films. J Appl Phys 121:224101.  https://doi.org/10.1063/1.4984833ADSCrossRefGoogle Scholar
  30. Gazquez J, Bose S, Sharma M, Torija MA, Pennycook SJ, Leighton C, Varela M (2013) Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3-δ thin films. APL Mater 1:012105.  https://doi.org/10.1063/1.4809547ADSCrossRefGoogle Scholar
  31. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502.  https://doi.org/10.1088/0953-8984/21/39/395502CrossRefGoogle Scholar
  32. Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, Cambridge, UKGoogle Scholar
  33. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215.  https://doi.org/10.1063/1.1564060ADSCrossRefGoogle Scholar
  34. Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124:219906.  https://doi.org/10.1063/1.2204597
  35. Himpsel FJ, McFeely FR, Taleb-Ibrahimi A, Yarmoff JA, Hollinger G (1988) Microscopic structure of the SiO2/Si interface. Phys Rev B 38:6084–6096.  https://doi.org/10.1103/PhysRevB.38.6084ADSCrossRefGoogle Scholar
  36. Huang Y-F, Kooyman PJ, Koper MTM (2016) Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy. Nat Commun 7:12440.  https://doi.org/10.1038/ncomms12440ADSCrossRefGoogle Scholar
  37. Hufner S (2003) Photoelectron spectroscopy: principles and applications. Springer, BerlinCrossRefGoogle Scholar
  38. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y (2012) Emergent phenomena at oxide interfaces. Nat Mater 11:103–113.  https://doi.org/10.1038/nmat3223ADSCrossRefGoogle Scholar
  39. Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039–1263.  https://doi.org/10.1103/RevModPhys.70.1039ADSCrossRefGoogle Scholar
  40. Ismail-Beigi S, Walker FJ, Disa AS, Rabe KM, Ahn CH (2017) Picoscale materials engineering. Nat Rev Mater 2:17060.  https://doi.org/10.1038/natrevmats.2017.60ADSCrossRefGoogle Scholar
  41. Kalabukhov A, Gunnarsson R, Börjesson J (2007) Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3∕SrTiO3 interface. Phys Rev B 75:121404.  https://doi.org/10.1103/PhysRevB.75.121404ADSCrossRefGoogle Scholar
  42. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186.  https://doi.org/10.1103/PhysRevB.54.11169ADSCrossRefGoogle Scholar
  43. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775.  https://doi.org/10.1103/PhysRevB.59.1758ADSCrossRefGoogle Scholar
  44. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106.  https://doi.org/10.1063/1.2404663ADSCrossRefGoogle Scholar
  45. Lee J, Demkov AA (2008) Charge origin and localization at the n-type SrTiO3/LaAlO3 interface. Phys Rev B 78:193104.  https://doi.org/10.1103/PhysRevB.78.193104ADSCrossRefGoogle Scholar
  46. Leon B, Janson JA (eds) (2009) Thin calcium phosphate coatings for medical implants. Springer, New YorkGoogle Scholar
  47. Liang CD, Ma R, Su Y, O’Hara A, Zhang EX, Alles ML, Zhao SE, Pantelides ST, Koester J, Schrimpf RD, Fleetwood DM (2018) Defects and low-frequency noise in irradiated black phosphorus MOSFETs with HfO2 gate dielectrics. IEEE Trans Nucl Sci 65:1227–1238.  https://doi.org/10.1109/TNS.2018.2828080ADSCrossRefGoogle Scholar
  48. Lyons J, Janotti A, Van de Walle C (2011) The role of oxygen-related defects and hydrogen impurities in HfO2 and ZrO2. Microelectron Eng 88:1452–1456.  https://doi.org/10.1016/j.mee.2011.03.099CrossRefGoogle Scholar
  49. Makov G, Payne MC (1995) Periodic boundary conditions in ab initio calculations. Phys Rev B 51:4014–4022.  https://doi.org/10.1103/PhysRevB.51.4014ADSCrossRefGoogle Scholar
  50. Mannhart J, Blank DHA, Hwang HY, Millis AJ, Triscone J-M (2008) Two-dimensional electron gases at oxide interfaces. MRS Bull 33:1027–1034.  https://doi.org/10.1557/mrs2008.222CrossRefGoogle Scholar
  51. Marinopoulous AG, Batyrev I, Zhou XJ, Shcrimpf RD, Fleetwood DM, Pantelides ST (2007) Hydrogen shuttling near Hf-defect complexes in Si/SiO2/HfO2 structures. Appl Phys Lett 91:233503.  https://doi.org/10.1063/1.2820380ADSCrossRefGoogle Scholar
  52. Martin RR (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, New YorkCrossRefGoogle Scholar
  53. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192.  https://doi.org/10.1103/PhysRevB.13.5188ADSMathSciNetCrossRefGoogle Scholar
  54. O’Hara A, Bersuker G, Demkov AA (2014) Assessing hafnium on hafnia as an oxygen getter. J Appl Phys 115:183703.  https://doi.org/10.1063/1.4876262ADSCrossRefGoogle Scholar
  55. Ohtomo A, Hwang HY (2004) A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–426.  https://doi.org/10.1038/nature02308ADSCrossRefGoogle Scholar
  56. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461.  https://doi.org/10.1038/nmat3017ADSCrossRefGoogle Scholar
  57. Pasquarello A, Hybertsen MS, Car R (1996) Theory of Si 2p core-level shifts at the Si(001)-SiO2 interface. Phys Rev B 53:10942–10950.  https://doi.org/10.1103/PhysRevB.53.10942ADSCrossRefGoogle Scholar
  58. Pennycook SJ, Nellist PD (eds) (2011) Scanning transmission electron microscopy: imaging and analysis. Springer, New YorkGoogle Scholar
  59. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079.  https://doi.org/10.1103/PhysRevB.23.5048ADSCrossRefGoogle Scholar
  60. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687.  https://doi.org/10.1103/PhysRevB.46.6671ADSCrossRefGoogle Scholar
  61. Perdew JP, Burke K, Ernzerhof M (1996) Generlized gradient approximation made simple. Phys Rev Lett 77:3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865ADSCrossRefGoogle Scholar
  62. Pham TA, Ping Y, Galli G (2017) Modelling heterogeneous interfaces for solar water splitting. Nat Mater 16:401–408.  https://doi.org/10.1038/nmat4803ADSCrossRefGoogle Scholar
  63. Ponath P, Fredrickson K, Posadas AB, Ren Y, Wu X, Vasudevan RK, Okatan BO, Jesse S, Aoki T, McCartney MR, Smith DJ, Kalinin SV, Lai K, Demkov AA (2015) Carrier density modulation in a germanium heterostructure by ferroelectric switching. Nat Commun 6:6067–6074.  https://doi.org/10.1038/ncomms7067CrossRefGoogle Scholar
  64. Qiao L, Droubay TC, Shutthanandan V, Zhu Z, Sushko PV, Chambers SA (2010) Thermodynamic instability at the stoichiometric LaAlO3/SrTiO3(001) interface. J Phys Condens Matter 22:312201.  https://doi.org/10.1088/0953-8984/22/31/312201ADSCrossRefGoogle Scholar
  65. Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD (1990) Optimized pseudopotentials. Phys Rev B 41:1227–1230.  https://doi.org/10.1103/PhysRevB.41.1227ADSCrossRefGoogle Scholar
  66. Robertson J (2000) Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vac Sci Technol B 18:1785–1791.  https://doi.org/10.1116/1.591472CrossRefGoogle Scholar
  67. Rondinelli JM, May SJ, Freeland JW (2012) Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull 37:261–270.  https://doi.org/10.1557/mrs.2012.49CrossRefGoogle Scholar
  68. Schneider W-D, Heyde M, Freund H-J (2018) Charge control in model catalysis: the decisive role of the oxide-nanoparticle interface. Chem Eur J 24:2317–2327.  https://doi.org/10.1002/chem.201703169CrossRefGoogle Scholar
  69. Seo H, Demkov AA (2011) First-principles study of polar LaAlO3 (001) surface stabilization by point defects. Phys Rev B 84:045440.  https://doi.org/10.1103/PhysRevB.84.045440ADSCrossRefGoogle Scholar
  70. Seo H, Demkov AA (2014) Band alignment in visible-light photo-active CoO/SrTiO3 (001) heterostructures. J Appl Phys 116:245305.  https://doi.org/10.1063/1.4905112ADSCrossRefGoogle Scholar
  71. Seo H, Posadas A, Demkov AA (2012a) Strain-drive spin-state transition and superexchange interaction in LaCoO3: Ab intio study. Phys Rev B 86:014430.  https://doi.org/10.1103/PhysRevB.86.014430ADSCrossRefGoogle Scholar
  72. Seo H, Posadas AB, Mitra C, Kvit AV, Ramdani J, Demkov AA (2012b) Band alignment and electronic structure of the anatase TiO2/SrTiO3(001) heterostructure integrated on Si(001). Phys Rev B 86:075301.  https://doi.org/10.1103/PhysRevB.86.075301ADSCrossRefGoogle Scholar
  73. Sharia O, Demkov AA, Bersuker G, Lee BH (2007) Theoretical study of the insulator/insulator interface: band alignment at the SiO2/HfO2 junction. Phys Rev B 75:035306.  https://doi.org/10.1103/PhysRevB.75.035306ADSCrossRefGoogle Scholar
  74. Shishkin M, Kresse G (2006) Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys Rev B 74:35101.  https://doi.org/10.1103/PhysRevB.74.035101ADSCrossRefGoogle Scholar
  75. Shishkin M, Kresse G (2007) Self-consistent GW calculations for semiconductors and insulators. Phys Rev B 75:235102.  https://doi.org/10.1103/PhysRevB.75.235102ADSCrossRefGoogle Scholar
  76. Shishkin M, Marsman M, Kresse G (2007) Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. Phys Rev Lett 99:246403.  https://doi.org/10.1103/PhysRevLett.99.246403ADSCrossRefGoogle Scholar
  77. Singh DJ, Nordstrom L (2006) Planewaves, pseudopotentials, and the LAPW method, 2nd edn. Spirnger, New YorkGoogle Scholar
  78. Skriver H (1984) The LMTO method. Spirnger, New YorkCrossRefGoogle Scholar
  79. Slater JC (1930) Atomic shielding constants. Phys Rev 36:57–64.  https://doi.org/10.1103/PhysRev.36.57ADSCrossRefzbMATHGoogle Scholar
  80. Slepko A, Demkov AA (2011) First-principles study of the biomineral hydroxyapatite. Phys Rev B 84:134108.  https://doi.org/10.1103/PhysRevB.84.134108ADSCrossRefGoogle Scholar
  81. Slepko A, Demkov AA (2013) First principles study of hydroxyapatite surface. J Chem Phys 139:044714.  https://doi.org/10.1063/1.4813828ADSCrossRefGoogle Scholar
  82. Soler JM, Artacho E, Gale JD, Garcίa A, Junquera J, Ordejόn P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745.  https://doi.org/10.1088/0953-8984/14/11/302ADSCrossRefGoogle Scholar
  83. Tejedor C, Flores F (1978) A simple approach to heterojunctions. J Phys C Solid State Phys 11:L19–L23.  https://doi.org/10.1088/0022-3719/11/1/005CrossRefGoogle Scholar
  84. Tejedor C, Flores F, Louis E (1977) The metal-semiconductor interface: Si (111) and zincblende (110) junctions. J Phys C Solid State Phys 10:2163–2177.  https://doi.org/10.1088/0022-3719/10/12/022ADSCrossRefGoogle Scholar
  85. Tersoff J (1984a) Schottky barrier heights and the continuum of gap states. Phys Rev Lett 52:465–468.  https://doi.org/10.1103/PhysRevLett.52.465ADSCrossRefGoogle Scholar
  86. Tersoff J (1984b) Theory of semiconductor heterojunctions: the role of quantum dipoles. Phys Rev B 30:4874–4877.  https://doi.org/10.1103/PhysRevB.30.4874ADSCrossRefGoogle Scholar
  87. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006.  https://doi.org/10.1103/PhysRevB.43.1993ADSCrossRefGoogle Scholar
  88. Van de Walle CG, Neugebauer J (2003) Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423:626–628.  https://doi.org/10.1038/nature01665ADSCrossRefGoogle Scholar
  89. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895.  https://doi.org/10.1103/PhysRevB.41.7892ADSCrossRefGoogle Scholar
  90. Varela M, Gazquez J, Pennycook SJ (2012) STEM-EELS imaging of complex oxides and interfaces. MRS Bull 37:29–35.  https://doi.org/10.1557/mrs.2011.330CrossRefGoogle Scholar
  91. Varley JB, Lordi V (2013) Electrical properties of point defects in CdS and ZnS. Appl Phys Lett 103:102103.  https://doi.org/10.1063/1.4819492ADSCrossRefGoogle Scholar
  92. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211.  https://doi.org/10.1139/p80-159ADSCrossRefGoogle Scholar
  93. Yin B, Aguado-Puente P, Qu S, Artacho E (2015) Two-dimensional electron gas at the PbTiO3/SrTiO3 interface: an ab initio study. Phys Rev B 92:115406.  https://doi.org/10.1103/PhysRevB.92.115406ADSCrossRefGoogle Scholar
  94. Zhang SB, Northrup JE (1991) Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys Rev Lett 67:2339–2342.  https://doi.org/10.1103/PhysRevLett.67.2339ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander A. Demkov
    • 1
    Email author
  • Kurt D. Fredrickson
    • 2
  • Hosung Seo
    • 3
  • Andrew O’Hara
    • 4
  1. 1.Department of PhysicsThe University of TexasAustinUSA
  2. 2.Patterson+Sheridan LLCSan JoseUSA
  3. 3.Department of PhysicsAjou UniversitySuwonRepublic of Korea
  4. 4.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA

Section editors and affiliations

  • Cesare Franchini
    • 1
  • Bilge Yildiz
    • 2
  1. 1.Faculty of Physics and Center for Computational Materials ScienceUniversity of ViennaViennaAustria
  2. 2.Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations