Advertisement

Small Polarons in Transition Metal Oxides

  • Michele Reticcioli
  • Ulrike Diebold
  • Georg Kresse
  • Cesare FranchiniEmail author
Living reference work entry

Abstract

The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation, the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first-principles schemes in order to predict, understand, and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.

Notes

Acknowledgements

The authors gratefully acknowledge the support of the Austrian Science Fund (FWF) SFB project VICOM (Grant No. F41) and FWF project POLOX (Grant No. I 2460-N36). The data and analysis presented in this chapter are the results of years-long collaborations on the physics of polarons with the theoretical colleague X. Hao (University of Vienna, now Yanshan University), A. Janotti, and C. Van de Walle (University of California, Santa Barbara) and with the experimental collaborators M. Setvin and M. Schmid (Surface Science Group @ TU Wien). Their invaluable help and stimulating ideas were essential to develop the research on polarons discussed in this work.

References

  1. Alexandrov AS, Devreese JT (2010) Advances in polaron physics. Springer. https://doi.org/10.1007/978-3-642-01896-1 CrossRefGoogle Scholar
  2. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943–954.  https://doi.org/10.1103/PhysRevB.44.943 ADSCrossRefGoogle Scholar
  3. Anisimov VI, Solovyev IV, Korotin MA, Czyzyk MT, Sawatzky GA (1993) Density-functional theory and NiO photoemission spectra. Phys Rev B 48(23):16929–16934.  https://doi.org/10.1103/PhysRevB.48.16929 ADSCrossRefGoogle Scholar
  4. Aryasetiawan F, Imada M, Georges A, Kotliar G, Biermann S, Lichtenstein AI (2004) Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys Rev B 70(19):195104.  https://doi.org/10.1103/PhysRevB.70.195104 ADSCrossRefGoogle Scholar
  5. Ashcroft NW, Mermin ND (1976) Solid state physics. W. B. Saunders Co., FloridazbMATHGoogle Scholar
  6. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377. https://doi.org/10.1063/1.464304, http://link.aip.org/link/?JCP/98/1372/1 ADSCrossRefGoogle Scholar
  7. Bertel E, Stockbauer R, Madey TE (1983) Resonant electron emission in Ti and TiO2. Phys Rev B 27(3):1939–1942.  https://doi.org/10.1103/PhysRevB.27.1939 ADSCrossRefGoogle Scholar
  8. Bondarenko N, Eriksson O, Skorodumova NV (2015) Polaron mobility in oxygen-deficient and lithium-doped tungsten trioxide. Phys Rev B 92:165119.  https://doi.org/10.1103/PhysRevB.92.165119 ADSCrossRefGoogle Scholar
  9. Brunschwig BS, Logan J, Newton MD, Sutin N (1980) A semiclassical treatment of electron-exchange reactions. Application to the hexaaquoiron(ii)-hexaaquoiron(iii) system. J Am Chem Soc 102(18):5798–5809. https://doi.org/10.1021/ja00538a017 CrossRefGoogle Scholar
  10. Calzado CJ, Hernández NC, Sanz JF (2008) Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface. Phys Rev B Condens Matter Mater Phys 77(4):1–10.  https://doi.org/10.1103/PhysRevB.77.045118 CrossRefGoogle Scholar
  11. Cao Y, Yu M, Qi S, Huang S, Wang T, Xu M, Hu S, Yan S (2017) Scenarios of polaron-involved molecular adsorption on reduced TiO2(110) surfaces. Sci Rep 7(1):6148. https://doi.org/10.1038/s41598-017-06557-6, http://www.nature.com/articles/s41598-017-06557-6
  12. Chambers S (1992) Elastic scattering and interference of backscattered primary, Auger and X-ray photoelectrons at high kinetic energy: principles and applications. Surf Sci Rep 16(6):261–331. https://doi.org/10.1016/0167-5729(92)90016-5, http://linkinghub.elsevier.com/retrieve/pii/0167572992900165 ADSCrossRefGoogle Scholar
  13. Chen W, Miceli G, Rignanese GM, Pasquarello A (2018) Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators. Phys Rev Mater 2:073803.  https://doi.org/10.1103/PhysRevMaterials.2.073803 CrossRefGoogle Scholar
  14. Cococcioni M, de Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys Rev B 71(3):035105.  https://doi.org/10.1103/PhysRevB.71.035105
  15. Cortecchia D, Yin J, Bruno A, Lo SZA, Gurzadyan GG, Mhaisalkar S, Brédas JL, Soci C (2017) Polaron self-localization in white-light emitting hybrid perovskites. J Mater Chem C 5(11):2771–2780. https://doi.org/10.1039/c7tc00366h, http://xlink.rsc.org/?DOI=C7TC00366H CrossRefGoogle Scholar
  16. Crawford JH, Slifkin LM Jr (1972) Point defects in solids. Springer, New YorkCrossRefGoogle Scholar
  17. Crevecoeur C, De Wit H (1970) Electrical conductivity of Li doped MnO. J Phys Chem Solids 31(4):783–791. https://doi.org/10.1016/0022-3697(70)90212-X, http://linkinghub.elsevier.com/retrieve/pii/002236977090212X ADSCrossRefGoogle Scholar
  18. Cui ZH, Wang YC, Zhang MY, Xu X, Jiang H (2018) Doubly screened hybrid functional: an accurate first-principles approach for both narrow- and wide-gap semiconductors. J Phys Chem Lett 9(9):2338–2345.  https://doi.org/10.1021/acs.jpclett.8b00919, pMID:29669414CrossRefGoogle Scholar
  19. Deák P, Aradi B, Frauenheim T (2015) Oxygen deficiency in TiO2: similarities and differences between the Ti self-interstitial and the O vacancy in bulk rutile and anatase. Phys Rev B Condens Matter Mater Phys 92(4):1–7.  https://doi.org/10.1103/PhysRevB.92.045204 CrossRefGoogle Scholar
  20. Deskins NA, Dupuis M (2007) Electron transport via polaron hopping in bulk TiO2: a density functional theory characterization. Phys Rev B 75(19):195212.  https://doi.org/10.1103/PhysRevB.75.195212 ADSCrossRefGoogle Scholar
  21. Deskins NA, Rousseau R, Dupuis M (2009) Localized electronic states from surface hydroxyls and polarons in TiO2(110). J Phys Chem C 113(33):14583–14586. https://doi.org/10.1021/jp9037655 CrossRefGoogle Scholar
  22. Deskins NA, Rousseau R, Dupuis M (2011) Distribution of Ti3+ surface sites in reduced TiO2. J Phys Chem C 115(15):7562–7572. https://doi.org/10.1021/jp2001139 CrossRefGoogle Scholar
  23. Devreese JT (1996) Polarons. In: Encyclopedia of applied physics. Wiiley-VCH Publishers, INc., pp 383–409. http://arxiv.org/abs/cond-mat/0004497 Google Scholar
  24. Diebold U, Li SC, Schmid M (2010) Oxide surface science. Ann Rev Phys Chem 61(1):129–148.  https://doi.org/10.1146/annurev.physchem.012809.103254 CrossRefGoogle Scholar
  25. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998a) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57(3):1505–1509.  https://doi.org/10.1103/PhysRevB.57.1505 ADSCrossRefGoogle Scholar
  26. Dudarev SL, Botton GA, Savrasov SY, Szotek Z, Temmerman WM, Sutton AP (1998b) Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA+U, SIC-LSDA and EELS study of UO2 and NiO. Electron Struct Elast Prop 166(1):429. https://doi.org/10.1002/(sici)1521-396x(199803)166:1<429::aid-pssa429>3.0.co;2-f, https://doi.org/10.1002/(SICI)1521-396X(199803)166:1%3C429::AID-PSSA429%3E3.0.CO;2-F
  27. Elmaslmane AR, Wetherell J, Hodgson MJP, McKenna KP, Godby RW (2018) Accuracy of electron densities obtained via Koopmans-compliant hybrid functionals. Phys Rev Mater 2(4):040801.  https://doi.org/10.1103/PhysRevMaterials.2.040801 CrossRefGoogle Scholar
  28. Emin D (2013) Polarons. Cambridge University Press. http://www.cambridge.org/9780521519069
  29. Ermin D (2013) Polarons. Cambridge University Press, CambridgeGoogle Scholar
  30. Feynman RP (1955) Slow electrons in a polar crystal. Phys Rev 97(3):660–665.  https://doi.org/10.1103/PhysRev.97.660 ADSzbMATHCrossRefGoogle Scholar
  31. Franchini C, Kresse G, Podloucky R (2009) Polaronic hole trapping in doped babio3. Phys Rev Lett 102:256402.  https://doi.org/10.1103/PhysRevLett.102.256402 ADSCrossRefGoogle Scholar
  32. Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle CG (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86:253–305.  https://doi.org/10.1103/RevModPhys.86.253 ADSCrossRefGoogle Scholar
  33. Freytag F, Corradi G, Imlau M (2016) Atomic insight to lattice distortions caused by carrier self-trapping in oxide materials. Sci Rep 6(1):36929.  https://doi.org/10.1038/srep36929, http://www.nature.com/articles/srep36929
  34. Fröhlich H (1954) Electrons in lattice fields. Adv Phys 3(11):325–361. https://doi.org/10.1080/00018735400101213 ADSzbMATHCrossRefGoogle Scholar
  35. Fröhlich H, Pelzer H, Zienau S (1950) Properties of slow electrons in polar materials. Lond Edinb Dublin Philos Mag J Sci 41(314):221–242. https://doi.org/10.1080/14786445008521794 zbMATHCrossRefGoogle Scholar
  36. Gerlach B, Smondyrev MA (2008) Upper and lower bounds for the large polaron dispersion in 1, 2, or 3 dimensions. Phys Rev B 77(17):174303.  https://doi.org/10.1103/PhysRevB.77.174303 ADSCrossRefGoogle Scholar
  37. Gerlach B, Kalina F, Smondyrev M (2003) On the LO-polaron dispersion in D dimensions. Phys Status Solidi (b) 237(1):204–214.  https://doi.org/10.1002/pssb.200301770 ADSCrossRefGoogle Scholar
  38. Giustino F (2017) Electron-phonon interactions from first principles. Rev Mod Phys 89:015003.  https://doi.org/10.1103/RevModPhys.89.015003 ADSMathSciNetCrossRefGoogle Scholar
  39. Grant FA (1959) Properties of Rutile (Titanium Dioxide). Rev Mod Phys 31(3):646–674.  https://doi.org/10.1103/RevModPhys.31.646 ADSCrossRefGoogle Scholar
  40. Gunnarsson O (1990) Calculation of parameters in model Hamiltonians. Phys Rev B 41(1): 514–518.  https://doi.org/10.1103/PhysRevB.41.514 ADSMathSciNetCrossRefGoogle Scholar
  41. Hahn T, Klimin S, Tempere J, Devreese JT, Franchini C (2018) Diagrammatic Monte Carlo study of Fröhlich polaron dispersion in two and three dimensions. Phys Rev B 97(13):134305. http://arxiv.org/abs/1803.09608,  https://doi.org/10.1103/PhysRevB.97.134305
  42. Hao X, Wang Z, Schmid M, Diebold U, Franchini C (2015) Coexistence of trapped and free excess electrons in SrTiO3. Phys Rev B 91(8):085204.  https://doi.org/10.1103/PhysRevB.91.085204 ADSCrossRefGoogle Scholar
  43. He J, Franchini C (2012) Screened hybrid functional applied to 3d 0 →3d 8 transition-metal perovskites LaMO3 (M = Sc-Cu): influence of the exchange mixing parameter on the structural, electronic and magnetic properties. Phys Rev B 86(23):235117.  https://doi.org/10.1103/PhysRevB.86.235117, 1209.0486
  44. He J, Franchini C (2017) Assessing the performance of self-consistent hybrid functional for band gap calculation in oxide semiconductors. J Phys Condens Matter 29(45):454004 https://doi.org/10.1088/1361-648X/aa867e, http://stacks.iop.org/0953-8984/29/i=45/a=454004?key=crossref%.8c4d8e5689ad45464f9fb9cfbc59579c, 1706.08159ADSGoogle Scholar
  45. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904. https://doi.org/10.1063/1.1329672 ADSCrossRefGoogle Scholar
  46. Janak J (1978) Proof that dE/dn_i = e_i in density-functional theory. Phys Rev B 18(2):7165–7168.  https://doi.org/10.1103/PhysRevB.18.7165 ADSCrossRefGoogle Scholar
  47. Janotti A, Franchini C, Varley JB, Kresse G, Van de Walle CG (2013) Dual behavior of excess electrons in rutile TiO2. Phys Status Solidi (RRL) Rapid Res Lett 7(3):199–203.  https://doi.org/10.1002/pssr.201206464 ADSCrossRefGoogle Scholar
  48. Klein A (2012) Transparent conducting oxides: electronic structure-property relationship from photoelectron spectroscopy with in situ sample preparation. J Am Ceram Soc.  https://doi.org/10.1111/jace.12143
  49. Kowalski PM, Camellone MF, Nair NN, Meyer B, Marx D (2010) Charge localization dynamics induced by oxygen vacancies on the TiO2(110) surface. Phys Rev Lett 105(14):5–8.  https://doi.org/10.1103/PhysRevLett.105.146405 CrossRefGoogle Scholar
  50. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1): 558–561.  https://doi.org/10.1103/PhysRevB.47.558 ADSCrossRefGoogle Scholar
  51. Kronik L, Stein T, Refaely-Abramson S, Baer R (2012) Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J Chem Theory Comput 8(5): 1515–1531. https://doi.org/10.1021/ct2009363 CrossRefGoogle Scholar
  52. Krüger P, Bourgeois S, Domenichini B, Magnan H, Chandesris D, Le Fèvre P, Flank AM, Jupille J, Floreano L, Cossaro A, Verdini A, Morgante A (2008) Defect states at the TiO2(110) surface probed by resonant photoelectron diffraction. Phys Rev Lett 100(5):055501.  https://doi.org/10.1103/PhysRevLett.100.055501 ADSCrossRefGoogle Scholar
  53. Krüger P, Jupille J, Bourgeois S, Domenichini B, Verdini A, Floreano L, Morgante A (2012) Intrinsic nature of the excess electron distribution at the TiO2(110) surface. Phys Rev Lett 108(12):126803.  https://doi.org/10.1103/PhysRevLett.108.126803 ADSCrossRefGoogle Scholar
  54. Landau LD (1933) über die bewegung der elektronen im kristallgitter. Phys Z Sowjet 664(3):644–645zbMATHGoogle Scholar
  55. Landau LD, Pekar SI (1965) The effective mass of the polaron. In: Collected papers of L.D. Landau, vol 53. Elsevier, pp 478–483. https://doi.org/10.1016/B978-0-08-010586-4.50072-9, ujp.bitp.kiev.ua, http://linkinghub.elsevier.com/retrieve/pii/B9780080105864500729
  56. Lany S (2011) Predicting polaronic defect states by means of generalized Koopmans density functional calculations. Phys Status Solidi (B) Basic Res 248(5):1052–1060.  https://doi.org/10.1002/pssb.201046274 ADSCrossRefGoogle Scholar
  57. Lany S, Zunger A (2009) Polaronic hole localization and multiple hole binding of acceptors in oxide wide-gap semiconductors. Phys Rev B 80(8):085202.  https://doi.org/10.1103/PhysRevB.80.085202 ADSCrossRefGoogle Scholar
  58. Lenjer S, Schirmer OF, Hesse H, Kool TW (2002) Conduction states in oxide perovskites: three manifestations of Ti3+ Jahn-Teller polarons in barium titanate. Phys Rev B 66(16):165106.  https://doi.org/10.1103/PhysRevB.66.165106 ADSCrossRefGoogle Scholar
  59. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52(8):5467–5471.  https://doi.org/10.1103/PhysRevB.52.R5467 ADSCrossRefGoogle Scholar
  60. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758. https://doi.org/10.1021/cr00035a013 CrossRefGoogle Scholar
  61. Locatelli A, Pabisiak T, Pavlovska A, Mentes TO, Aballe L, Kiejna A, Bauer E (2007) One-dimensional Au on TiO2. J Phys Condens Matter 19(8):082202. https://doi.org/10.1088/0953-8984/19/8/082202, http://stacks.iop.org/0953-8984/19/i=8/a=082202?key=crossref.dabd3b55239f988fa949f60f9e906b9a ADSGoogle Scholar
  62. Marcus R, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta (BBA) Rev Bioenergetics 811(3):265–322. https://doi.org/10.1016/0304-4173(85)90014-X, http://www.sciencedirect.com/science/article/pii/030441738590%014X CrossRefGoogle Scholar
  63. Maxisch T, Zhou F, Ceder G (2006) Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys Rev B Condens Matter Mater Phys 73(10):1–6.  https://doi.org/10.1103/PhysRevB.73.104301 CrossRefGoogle Scholar
  64. Meredig B, Thompson A, Hansen HA, Wolverton C, van de Walle A (2010) Method for locating low-energy solutions within DFT+U. Phys Rev B 82(19):195128.  https://doi.org/10.1103/PhysRevB.82.195128 ADSCrossRefGoogle Scholar
  65. Mishchenko A, Prokof’ev N, Sakamoto A, Svistunov B (2000) Diagrammatic quantum Monte Carlo study of the Fröhlich polaron. Phys Rev B 62(10):6317–6336.  https://doi.org/10.1103/PhysRevB.62.6317%5Cn,  https://doi.org/10.1103/PhysRevB.62.6317
  66. Miyata K, Meggiolaro D, Trinh MT, Joshi PP, Mosconi E, Jones SC, De Angelis F, Zhu XY (2017) Large polarons in lead halide perovskites. Sci Adv 3(8):e1701217.  https://doi.org/10.1126/sciadv.1701217 CrossRefGoogle Scholar
  67. Morgan BJ, Watson GW (2009) Polaronic trapping of electrons and holes by native defects in anatase TiO2. Phys Rev B Condens Matter Mater Phys 80(23):2–5.  https://doi.org/10.1103/PhysRevB.80.233102 CrossRefGoogle Scholar
  68. Moser S, Moreschini L, Jaćimović J, Barišić OS, Berger H, Magrez A, Chang YJ, Kim KS, Bostwick A, Rotenberg E, Forró L, Grioni M (2013) Tunable polaronic conduction in anatase TiO2. Phys Rev Lett 110(19):1–5.  https://doi.org/10.1103/PhysRevLett.110.196403 CrossRefGoogle Scholar
  69. Moses PG, Janotti A, Franchini C, Kresse G, Van de Walle CG (2016) Donor defects and small polarons on the tio2(110) surface. J Appl Phys 119(18):181503. https://doi.org/10.1063/1.4948239 ADSCrossRefGoogle Scholar
  70. Mott NF, Stoneham AM (1977) The lifetime of electrons, holes and excitons before self-trapping. J Phys C Solid State Phys 10(17):3391–3398. https://doi.org/10.1088/0022-3719/10/17/022, http://stacks.iop.org/0022-3719/10/i=17/a=022?key=crossref.62bab474a6fe30e880f6b92499b5d42b ADSCrossRefGoogle Scholar
  71. Nolan M, Watson GW (2006) Hole localization in Al doped silica: a DFT+U description. J Chem Phys 125(14):144701. https://doi.org/10.1063/1.2354468 ADSCrossRefGoogle Scholar
  72. Onishi H, Iwasawa Y (1994) Reconstruction of TiO2(110) surface: STM study with atomic-scale resolution. Surf Sci 313(1–2):L783–L789. https://doi.org/10.1016/0039-6028(94)91146-0, http://linkinghub.elsevier.com/retrieve/pii/0039602894911460 ADSCrossRefGoogle Scholar
  73. Onishi H, Iwasawa Y (1996) Dynamic visualization of a metal-oxide-surface/gas-phase reaction: time-resolved observation by scanning tunneling microscopy at 800 K. Phys Rev Lett 76(5):791–794.  https://doi.org/10.1103/PhysRevLett.76.791 ADSCrossRefGoogle Scholar
  74. Onishi H, Fukui Ki, Iwasawa Y (1995) Atomic-scale surface structures of TiO2(110) determined by scanning tunneling microscopy: a new surface-limited phase of titanium oxide. Bull Chem Soc Japan 68(9):2447–2458.  https://doi.org/10.1246/bcsj.68.2447 CrossRefGoogle Scholar
  75. Pacchioni G (2015) Numerical simulations of defective structures: the nature of oxygen vacancy in non-reducible (MgO, SiO2, ZrO2) and reducible (TiO2, NiO, WO3) oxides. In: Jupille J, Thornton G (eds) Defects at oxide surfaces, chap 1. Springer, pp 1–28. https://doi.org/10.1007/978-3-319-14367-5 Google Scholar
  76. Papageorgiou AC, Beglitis NS, Pang CL, Teobaldi G, Cabailh G, Chen Q, Fisher AJ, Hofer WA, Thornton G (2010) Electron traps and their effect on the surface chemistry of TiO2(110). Proc Nat Acad Sci 107(6):2391–2396. http://www.pnas.org/content/107/6/2391,  https://doi.org/10.1073/pnas.0911349107 ADSCrossRefGoogle Scholar
  77. Pekar SI (1946) Local quantum states of electrons in an ideal ion crystal. Zh Eksp Teor Fiz 335(16)Google Scholar
  78. Perdew JP, Levy M (1983) Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Phys Rev Lett 51(20):1884–1887. http://www.ncbi.nlm.nih.gov/pubmed/622,  https://doi.org/10.1103/PhysRevLett.51.1884 ADSCrossRefGoogle Scholar
  79. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694.  https://doi.org/10.1103/PhysRevLett.49.1691 ADSCrossRefGoogle Scholar
  80. Possenriede E, Kröse H, Varnhorst T, Scharfschwerdt R, Schirmer OF (1994) Shallow acceptor and electron conduction states in BaTiO3. Ferroelectrics 151(1):199–204. https://doi.org/10.1080/00150199408244743 CrossRefGoogle Scholar
  81. Prokof’ev NV, Svistunov BV (1998) Polaron problem by diagrammatic quantum Monte Carlo. Phys Rev Lett 81(12):2514–2517. http://arxiv.org/abs/cond-mat/9804097%5Cn,  https://doi.org/10.1103/PhysRevLett.81.2514 ADSCrossRefGoogle Scholar
  82. Ramakumar R, Das AN (2004) Polaron cross-overs and d-wave superconductivity in Hubbard-Holstein model. Eur Phys J B 41(2):197–200.  https://doi.org/10.1140/epjb/e2004-00309-4, 0611355ADSCrossRefGoogle Scholar
  83. Ramberger B, Schäfer T, Kresse G (2017) Analytic interatomic forces in the random phase approximation. Phys Rev Lett 118:106403.  https://doi.org/10.1103/PhysRevLett.118.106403 ADSCrossRefGoogle Scholar
  84. Rashba EI (2005) Polarons. In: Bassani F, Liedl GL, Wyder P (eds) Encyclopedia of condensed matter physics, chap 4. Elsevier, Oxford, pp 347–355CrossRefGoogle Scholar
  85. Reticcioli M, Setvin M, Hao X, Flauger P, Kresse G, Schmid M, Diebold U, Franchini C (2017) Polaron-driven surface reconstructions. Phys Rev X 7(3):031053.  https://doi.org/10.1103/PhysRevX.7.031053 Google Scholar
  86. Reticcioli M, Setvin M, Schmid M, Diebold U, Franchini C (2018a) Formation and dynamics of small polarons on the rutile TiO2 (110) surface. Phys Rev B 98(4):045306. http://arxiv.org/abs/1805.01849,  https://doi.org/10.1103/PhysRevB.98.045306
  87. Reticcioli M, Sokolović I, Schmid M, Diebold U, Setvin M, Franchini C (2019) Interplay between adsorbates and polarons: CO on rutile TiO2(110). Phys Rev Lett 122: 016805.  https://doi.org/10.1103/PhysRevLett.122.016805 ADSCrossRefGoogle Scholar
  88. Reuter K, Scheffler M (2001) Composition, structure, and stability of ruo2(110) as a function of oxygen pressure. Phys Rev B 65:035406.  https://doi.org/10.1103/PhysRevB.65.035406 ADSCrossRefGoogle Scholar
  89. Rønnow HM, Renner C, Aeppli G, Kimura T, Tokura Y (2006) Polarons and confinement of electronic motion to two dimensions in a layered manganite. Nature 440(7087):1025–1028.  https://doi.org/10.1038/nature04650, http://www.nature.com/articles/nature04650 ADSCrossRefGoogle Scholar
  90. Rosenfelder R, Schreiber A (2001) On the best quadratic approximation in feynman’s path integral treatment of the polaron. Phys Lett A 284(2):63–71. https://doi.org/10.1016/S0375-9601(01)00287-0, http://www.sciencedirect.com/science/article/pii/S0375960101002870 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  91. Salje E, Alexandrov AS, Liang WY (2005) Polarons and bipolarons in high-Tc superconductors and related materials. Cambridge University Press, CambridgeGoogle Scholar
  92. Setvin M, Franchini C, Hao X, Schmid M, Janotti A, Kaltak M, Van De Walle CG, Kresse G, Diebold U (2014a) Direct view at excess electrons in TiO2 rutile and anatase. Phys Rev Lett 113(8):1–5.  https://doi.org/10.1103/PhysRevLett.113.086402 CrossRefGoogle Scholar
  93. Setvin M, Hao X, Daniel B, Pavelec J, Novotny Z, Parkinson GS, Schmid M, Kresse G, Franchini C, Diebold U (2014b) Charge trapping at the step edges of TiO2 anatase (101). Angew Chem Int Ed 53(18):4714–4716.  https://doi.org/10.1002/anie.201309796 CrossRefGoogle Scholar
  94. Sezen H, Buchholz M, Nefedov A, Natzeck C, Heissler S, Di Valentin C, Wöll C (2015) Probing electrons in TiO2 polaronic trap states by IR-absorption: evidence for the existence of hydrogenic states. Sci Rep 4(1):3808.  https://doi.org/10.1038/srep03808, http://www.nature.com/articles/srep03808
  95. Shibuya T, Yasuoka K, Mirbt S, Sanyal B (2017) Subsurface polaron concentration as a factor in the chemistry of reduced TiO2 (110) surfaces. J Phys Chem C 121(21):11325–11334.  https://doi.org/10.1021/acs.jpcc.7b00935 CrossRefGoogle Scholar
  96. Spreafico C, VandeVondele J (2014) The nature of excess electrons in anatase and rutile from hybrid DFT and RPA. Phys Chem Chem Phys 16(47):26144–26152. http://pubs.rsc.org/en/content/articlehtml/2014/cp/c4cp03981e, http://xlink.rsc.org/?DOI=C4CP03981E, https://doi.org/10.1039/C4CP03981E CrossRefGoogle Scholar
  97. Stoneham AM, Gavartin J, Shluger AL, Kimmel AV, Ramo DM, Rønnow HM, Aeppli G, Renner C (2007) Trapping, self-trapping and the polaron family. J Phys Condens Matter 19(25):255208. https://doi.org/10.1088/0953-8984/19/25/255208, http://stacks.iop.org/0953-8984/19/i=25/a=255208 ADSGoogle Scholar
  98. Sun L, Huang X, Wang L, Janotti A (2017) Disentangling the role of small polarons and oxygen vacancies in CeO2. Phys Rev B 95(24):245101.  https://doi.org/10.1103/PhysRevB.95.245101 ADSCrossRefGoogle Scholar
  99. Teresa JMD, Ibarra MR, Algarabel PA, Ritter C, Marquina C, Blasco J, García J, del Moral A, Arnold Z (1997) Evidence for magnetic polarons in the magnetoresistive perovskites. Nature 386(6622):256–259. https://doi.org/10.1038/386256a0 ADSCrossRefGoogle Scholar
  100. To J, Sokol AA, French SA, Kaltsoyannis N, Catlow CRA (2005) Hole localization in [AlO4]0 defects in silica materials. J Chem Phys 122(14):144704. https://doi.org/10.1063/1.1880972 ADSCrossRefGoogle Scholar
  101. Tuller H, Nowick A (1977) Small polaron electron transport in reduced CeO2 single crystals. J Phys Chem Solids 38(8):859–867. https://doi.org/10.1016/0022-3697(77)90124-X, http://linkinghub.elsevier.com/retrieve/pii/002236977790124X ADSCrossRefGoogle Scholar
  102. Verdi C, Caruso F, Giustino F (2017) Origin of the crossover from polarons to Fermi liquids in transition metal oxides. Nat Commun 8:1–7.  https://doi.org/10.1038/ncomms15769 CrossRefGoogle Scholar
  103. Wang M, Bi C, Li L, Long S, Liu Q, Lv H, Lu N, Sun P, Liu M (2014a) Thermoelectric seebeck effect in oxide-based resistive switching memory. Nat Commun 5(1):4598.  https://doi.org/10.1038/ncomms5598, http://www.nature.com/articles/ncomms5598
  104. Wang Q, Oganov AR, Zhu Q, Zhou XF (2014b) New reconstructions of the (110) surface of rutile TiO2 predicted by an evolutionary method. Phys Rev Lett 113(26):1–5.  https://doi.org/10.1103/PhysRevLett.113.266101 Google Scholar
  105. Yang S, Halliburton LE, Manivannan A, Bunton PH, Baker DB, Klemm M, Horn S, Fujishima A (2009) Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: oxygen vacancies and Ti3+ ions. Appl Phys Lett 94(16):162114. https://doi.org/10.1063/1.3124656 ADSCrossRefGoogle Scholar
  106. Yang S, Brant AT, Giles NC, Halliburton LE (2013) Intrinsic small polarons in rutile TiO2. Phys Rev B 87(12):125201.  https://doi.org/10.1103/PhysRevB.87.125201 ADSCrossRefGoogle Scholar
  107. Yin Wj, Wen B, Zhou C, Selloni A, Liu Lm (2018) Excess electrons in reduced rutile and anatase TiO2. Surf Sci Rep 73(2):58–82. https://doi.org/10.1016/j.surfrep.2018.02.003, http://linkinghub.elsevier.com/retrieve/pii/S0167572918300128 ADSCrossRefGoogle Scholar
  108. Zhang SX, Kundaliya DC, Yu W, Dhar S, Young SY, Salamanca-Riba LG, Ogale SB, Vispute RD, Venkatesan T (2007) Niobium doped TiO2: intrinsic transparent metallic anatase versus highly resistive rutile phase. J Appl Phys 102(1):013701. https://doi.org/10.1063/1.2750407 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michele Reticcioli
    • 1
  • Ulrike Diebold
    • 2
  • Georg Kresse
    • 1
  • Cesare Franchini
    • 3
    Email author
  1. 1.University of ViennaViennaAustria
  2. 2.Institute of Applied PhysicsTechnische Universität WienViennaAustria
  3. 3.Faculty of Physics and Center for Computational Materials ScienceUniversity of ViennaViennaAustria

Section editors and affiliations

  • Cesare Franchini
    • 1
  • Bilge Yildiz
    • 2
  1. 1.Faculty of Physics and Center for Computational Materials ScienceUniversity of ViennaViennaAustria
  2. 2.Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations